

KIAMA WEST TRAFFIC IMPACT ASSESSMENT

13 OCTOBER 2022

Quality Assurance

Project:	Kiama West Traffic Impact Assessment			
Project Number:	SCT_00337			
Client:	Traders in Purple	ABN:	52 162 126 721	
Prepared by:	SCT Consulting PTY. LTD. (SCT Consulting)	ABN:	53 612 624 058	
		- -		
Information				

Author:	Shawn Cen, Principal Consultant Sharif Fayad, Consultant	Shawalen
Reviewer:	Andy Yung, Director	AY
Authoriser:	Andy Yung, Director	AY

Revision	Revision Date	Details
1.0	13 October 2022	Draft report

© SCT Consulting PTY LTD (SCT Consulting)

SCT Consulting's work is intended solely for the use of the Client and the scope of work and associated responsibilities outlined in this document. SCT Consulting assumes no liability with respect to any reliance that the client places upon this document. Use of this document by a third party to inform decisions is the sole responsibility of that third party. Any decisions made or actions taken as a result of SCT Consulting's work shall be the responsibility of the parties directly involved in the decisions or actions. SCT Consulting may have been provided information by the client and other third parties to prepare this document which has not been verified. This document may be transmitted, reproduced or disseminated only in its entirety and in accordance with the above.

Contents

Exec		-		
	Purpo	ose of this i	report	i
			context	
		• .	rt conditions	
	•		opment	
			iisalives	
	mana	sport initiati	VC3	11
1.0	Intro	duction		1
	1.1	Backgrou	und	1
	1.2	Purpose	of this report	1
	1.3	Report st	tructure	2
2.0	Strat	egic conte	ext	3
	2.1	Site cont	ext	3
	2.2	Kiama Lo	ocal Strategic Planning Statement (2020)	3
	2.3	Illawarra	-Shoalhaven Regional Transport Plan	4
	2.4	Kiama Ca	apital Works Program	5
	2.5	Cycleway	y Plan	5
	2.6	Kiama D	evelopment Control Plans	6
		2.6.1	Parking requirements	6
		2.6.2	Active and public transport	7
		2.6.3	Road hierarchy	7
3.0	Exist	ing condit	tions	9
	3.1	Travel be	ehaviour	9
	3.2	Road net	twork	9
	3.3	Road Sa	fety	. 10
	3.4	Public tra	ansport	. 11
		3.4.1	Bus network	
		3.4.2	Train network	
	3.5		ansport	
	3.6		ion performance	
		3.6.1	Key assumptions for base year model	
		3.6.2 3.6.3	Model calibration	
		3.6.3 3.6.4	Intersection level of service	
		0.0.4		. 10
4.0	-	-	development	
	4.1	-	d master plan of Kiama West	
	4.2		ment yield	
	4.3		twork and hierarchy	
	4.4		ansport connections	
	4.5	Public tra	ansport connections	. 21
5.0	Traffi		nsport impact appraisal	
	5.1		eration	
	5.2	Trip distr	ibution	. 22
	5.3	Road net	twork impact	. 23
		5.3.1	Modelling scenarios	
		5.3.2	Future year base case	
	E 4	5.3.3 Dublic tro	Intersection performance	
	5.4	Public (fa	ansport impact	. 20

	5.5	Active transport impact	25
6.0	Concl	usion	26
Ap	pen	dices	

APPENDIX A	SIDRA model output	А
APPENDIX B	Network models	В

Executive summary

Purpose of this report

SCT Consulting was engaged by Traders In Purple (the proponent) to carry out a Traffic Impact Assessment to support the planning proposal for a site in Kiama West. The rezoned lots will enable the development of 1,103 residential dwellings and non-residential premises to serve the community.

Future planning context

Kiama Local Strategic Planning Statement (LSPS) highlights a housing growth requirement and improvements to the existing transport network to enable the target increase in population. Kiama West planning proposal would support the delivery of the housing growth target for the local government area.

Illawarra-Shoalhaven Regional Transport Plan works towards improving the public transport system and active transport to reduce dependence on private vehicles and promote the 'moving more with less' framework. This supports a sustainable outcome associated with the proposal.

Existing transport conditions

The study area showed a high proportion of private car use at 90 per cent. As the traffic demand is relatively low on the local road network, the convenience of private vehicles dominates the need to use any other mode of transport. Additionally, the older median age means that active modes such as cycling and/or walking are usually less preferred over other modes.

Only one bus route is running on Jamberoo Road to the north of the site. The bus frequency is relatively low during peak hours. Kiama train station is located in the town centre, which is on South Coast Line.

Shared path facilities are available to the east of the site completed together with the neighbouring subdivision. The connection to a wider cycle network especially to Kiama Town Centre is relatively poor.

Proposed development

The proposal would accommodate a total of 1,103 dwellings and non-residential premises to service the future residents.

The proposed street network aims at increasing the site's permeability with multi-tier streets and the proposed crosssections are generally consistent with the Kiama Development Control Plan.

The proposed shared path system would connect with the existing shared path to the east of the site to facilitate cyclists to access a wider destination. The proposed bus routes would occur on the proposed loop road and a total of five bus stops would be provided.

Figure ES shows an indicative aerial view of the site.

Figure ES Indicative aerial view of the site

Source: e8urban, 2022

Transport appraisal

The net increase of vehicular traffic associated with the proposal is estimated to be 783 and 860 vehicles per hour for AM and PM peaks based on the RMS '*Guide to Traffic Generating Developments (2013)*'.

An approved planning proposal close to the subject development (Kiama South planning proposal) would have a cumulative impact on the road network in the vicinity of the site. Hence, traffic modelling was undertaken for 2036 AM peak and PM peak hours which assesses a 10-year horizon year after the development is opened (estimated in 2026). The scenarios for the future year include:

- Future year base case (including Kiama South planning proposal)
- Future base case with the Kiama West planning proposal.

Due to relatively low traffic demand and resultant sufficient remaining capacity, all intersections are expected to still operate at an acceptable level of service during the peak hours in 2036, including the addition of proposed Kiama West (the proposal).

Transport initiatives

It is proposed to partner with community organisations to investigate options for alternative transport such as community transport or shuttle services to connect the site with Kiama Town Centre. The current major collector/spine road has a cross-section that caters for future bus movements and would be capable of servicing future residents of Kiama West.

It is proposed to design shared paths that connect the site and the existing network. The current major collector/spine road has a cross-section that caters for shared paths on the verge. Cycle parking facilities should be provided in open spaces/parks as well as any community facilities. Cycle connections on Jamberoo Road and Bland Street (existing sections) are proposed to be provided for future connections to the local schools.

1.0 Introduction

1.1 Background

SCT Consulting was engaged by Traders In Purple (the proponent) to provide traffic and transport consultancy services to support the planning proposal of a site in Kiama West. The development proposes to rezone 14 land parcels for residential and non-residential use as shown in **Table 1-1**.

Street Address	Lot Number(s)/Deposited Plan
103 Jamberoo Road Kiama	187/751279 102/1176643
33 Greyleigh Drive Kiama	156, 183, 185, 186, 188, 189/751279 1/995058 1/1003719 1320/1060995 2/1135218 1/1178500
177 Long Brush Road Jerrara	201/1148007

Table 1-1 Development Lot and DP numbers

Source: e8urban, 2022

The rezoned lots will enable the development of 1,103 dwellings and non-residential premises.

1.2 Purpose of this report

The purpose of this Traffic Impact Assessment is to support the Planning Proposal for a mixed-use development at Longbrush Road Kiama.

The document has assessed the impact of the illustrative development concept in terms of the net increase in trips generated, connectivity and access to the surrounding road network, public and active transport requirements and any potential mitigation measures required as a result of the development.

The Traffic Impact Assessment has considered:

- Review relevant background documents and information including relevant state, regional and local planning policies, transport planning documents
- Collate existing travel pattern data including Census, Journey-to-work data, to understand existing traffic and transport conditions
- Undertake a desktop review of existing traffic and transport conditions, including all types of transport modes
- Calculate future traffic generation based on the Roads and Maritime Services Guide to Traffic Generating Developments (2002) and subsequent technical direction
- Determine the net increase in the trip generation of the proposed development (based on the agreed development yield)
- Distribute the net trip generation to the surrounding road network based on the preferred access strategy and travel pattern
- Undertake SIDRA modelling and determine likely infrastructure upgrades required to cater for the proposed development if required
- Identify key active transport and public transport routes to/from the development
- Identify public and active transport measures and sustainable travel initiatives for development.

1.3 Report structure

This report has been structured into the following sections:

- Section 2.0 provides a summary of the review of all relevant background documents.
- Section 3.0 describes the existing transport conditions for all modes of transport.
- Section 4.0 describes the proposed development, its access strategy and a review of access requirements for different transport modes.
- Section 5.0 outlines the traffic and transport appraisal which describes the modelling undertaken, the likely trip generation, and the indicative impact as a result of the proposed development.
- Section 6.0 summarises the report content and presents the conclusions.

2.0 Strategic context

2.1 Site context

Kiama West is a precinct of 14 lots located to the west of the existing Kiama township. The site is bounded by the existing residential subdivision to the east, Jamberoo Road to the north, Long Brush Road and Old Saddleback Road to the south and rural landscape to the west.

Figure 2–1 illustrates the site's location relative to the existing township as well as the surrounding road network.

2.2 Kiama Local Strategic Planning Statement (2020)

Kiama Local Strategic Planning Statement (LSPS) set out the vision of the land use planning for Kiama. The LSPS aims to:

- Manage sustainable growth
- Develop a diverse and resilient economy
- Protect rural landscapes
- Mitigate and adapt to climate change to protect the environment
- Foster vibrant and accessible places.

To manage the predicted moderate housing growth, the Kiama locality will need an additional 1,400 houses to cater for the projected 18 per cent population increase (from the 2016 figures). This growth will be accommodated by greenfield expansions as well as infill developments that do not disrupt nor spoil the distinct nature, character and heritage of the existing towns and villages.

The LSPS looks at improving the existing transport network by:

- Completing the Kiama traffic and parking study to identify the future needs of the Kiama Municipality
- Advocating for ongoing prioritisation for connections to Kiama such as rail improvements and ongoing improvements to the Princes Highway
- Partnering with community organisations to investigate options for alternative transport such as community transport or shuttle services
- Completing a walking and cycling strategy to identify opportunities for improved walking and cycling within and between town centres.

Implications for Kiama West: The LSPS highlights a housing growth requirement. The network improvements would enable it to withstand the increased population. Kiama West would support the delivery of the housing growth target and promote the mode shift to sustainable transport methods.

2.3 Illawarra-Shoalhaven Regional Transport Plan

The Illawarra-Shoalhaven plan articulates how Transport for NSW plans to reshape transport needs based on five major changes in the region, which are:

- A growing population
- Regionally significant precincts
- Expanding freight task
- Influence of Western Sydney
- Low emissions future.

The plan aims to accommodate these regionally based changes by working towards the milestones that are categorised under the following goals:

- The connected multimodal network facilitates seamless connectivity between people's homes, workplaces and leisure
- Safer travel in the Illawarra-Shoalhaven region
- Liveable transport network that supports vibrant places while enabling and promoting the movement of people
- Adaptive and sustainable to contribute to a low emissions future
- Productive and efficient support the idea of 'moving more with less'
- Resilient against major disruptions such as natural disasters or unplanned events.

The improvement to the transport system will assist Kiama in accommodating a growing population in a safe, adaptive and sustainable way including:

- 30-minute public transport catchments for Kiama
- Sydney to Bomaderry Fast Rail Improvements
- South Coast Line Electrification Kiama to Bomaderry
- Trial on-demand transport services
- Opportunities to implement 30 km/h speed zones
- Addressing barriers to walking and cycling to school.

Implications for Kiama West: There are plans in place that work towards improving the public transport system and active transport to reduce dependence on private vehicles and promote the 'moving more with less' framework. This supports a sustainable outcome associated with the proposal.

2.4 Kiama Capital Works Program

The Kiama municipal capital works program provides insight into the planned works/programs for the Kiama municipal region. The following projects have been identified as relevant to this assessment and development:

- Footpaths and Cycleways
 - Jamberoo Valley cycleway construction
- Roads and bridges
 - Claremont Place/Seg 01 Irvine Street to end/surface
 - Irvine Street, Barney St to Thomson St Road surface renewal
- Traffic facilities
 - Traffic facilities improvement program
 - Town centre study traffic improvements

Implications for Kiama West: There are planned improvements for Kiama's (and its surrounding suburbs) facilities and services to accommodate the increase in population. The Kiama West proposal could provide the housing required to accommodate the increase in population. There are limited capital works occurring in the vicinity of the site due to its rural land use. There is an opportunity for the site to contribute to the local infrastructure improvement as part of the land rezoning.

2.5 Cycleway Plan

The Kiama *Cycleway Plan* provides insight into the existing and proposed on/off-road cycleways in the suburb of Kiama. The objectives of the plan are to:

- Establish a network of routes to support safe, convenient and pleasant cycling for residents and visitors
- Consult with community groups in the preparation of the Cycleway Plan
- Encourage community education on the benefits of cycling
- Improve safety for bicycle riders and provide a range of facilities to support cycling both as a transport and recreational activity
- Identify suitable requirements for the introduction of bicycle routes in new residential release areas
- Produce a bike route map for distribution to the general community, and specifically to schools, to encourage the use of bicycles within the local areas
- Identify the necessary facilities to be provided at points of connection with various other modes of transport.
 To establish a priority list of bicycle links within the Municipality and with adjoining Municipalities.

Figure 2–2 Location of the potential expansion areas

Source: Kiama Cycleway Plan - March 2005 (Appendix Sheet 4 and 5)

Implications for Kiama West: The bicycle plan aims to improve and encourage the movement of people in ways that reduce dependence on the existing road infrastructure. There are limited cycle facility and infrastructure upgrades planned in the vicinity of the site due to its rural nature in land use. The proposed development would have the opportunity to improve the active transport facility surrounding the site and extend the proposed network in Kiama to Kiama West.

2.6 Kiama Development Control Plans

The *Kiama Development Control Plan* (DCP) outlines requirements for the provision of parking, active transport, traffic assessments/plans and road hierarchy within development sites.

2.6.1 Parking requirements

The parking requirements are a set of controls that dictate vehicular parking within a development based on factors such as size and use. The controls applicable to the proposed site are shown in **Table 2-1** for the relevant land uses that are proposed in Kiama West.

Type of development	Minimum car parking requirement
Dwelling house	 dedicated space behind the building line space behind the front boundary
Dual occupancy/Attached dwelling	 For each occupancy, 1 dedicated space behind the building line 1 space behind the front boundary
Multi-dwelling housing/residential flat building	 1 dedicated space behind the building line (per one- or two-bedroom dwelling) 1 additional space per three-bedroom dwelling (and above) behind the front boundary plus 1 space per 2 dwellings for visitor parking behind the front boundary.

Table 2-1 Minimum Car Parking Standards

Type of development	Minimum car parking requirement
Retail premises	1 space per 35m ² of gross leasable floor area

Source: Kiama Development Control Plan 2020 - Chapter 3.6 Common Requirements

Additionally, for any parking access analysis, Kiama municipal council requires that any medium-density zoned developments (7 dwellings or more) use the B99 vehicle for minimum access requirements.

2.6.2 Active and public transport

The active transport requirements are a set of controls that ensure designs fulfil the following main objectives. Applicable controls to the proposed project are:

- Any residential subdivision should identify the overall layout of dedicated pedestrian footpaths and cycleways within the subdivision. The constructed pedestrian footpath shall be a minimum width of 1.2 metres. For any shared pedestrian footpath/cycleway, minimum 2.5-metre width is required and widened to 3 metres if the shared footpath/cycleway, is located adjacent to any structure or obstruction.
- Pedestrian and cycleways should be provided to link roads particularly cul-de-sacs and to directly access public transport routes such as bus stops as well as public reserves.
- Pedestrian footpaths should have a maximum longitudinal grade of 15%, except in cases where the approved road carriageway will have a longitudinal grade greater than 15%. Path ramps connecting pedestrian footpaths with roads must be designed to meet the needs of people with a disability (eg wheelchairs or sight impairment) and people with a pram. The pathway should be constructed of concrete, except where varied by Council.
- Safe pedestrian crossings are to be created with the use of pedestrian refuges, slow points, thresholds or other appropriate measures
- All footpaths and cycleways are to be provided with appropriate lighting and designed to incorporate Crime Prevention through Environmental Design (CPTED) principles by minimising any potential hiding places
- Large residential subdivisions should be designed to make provision for a bus service to link existing urban areas with the new residential subdivisions. The bus route should be designed to provide adequate servicing by bus companies. Therefore, consultation should take place with the local bus companies and the relevant NSW Government Transport Agency to determine whether a bus service can be provided in the new residential subdivision.
- The bus route should be primarily designed along collector roads and linked up to sub-arterial or arterial roads, due to the requirement for wider road carriageways.
- Indented bus parking bays should be provided at nominated bus stops.
- Bus stops should be generally located within 400 metres of walking distance for 90% of the lots in the immediate locality.

2.6.3 Road hierarchy

The road hierarchy requirements are a set of controls that ensure designs fulfil the following main objectives:

- To provide a defined hierarchy of roads, to provide an acceptable level of access, safety and convenience for all road users.
- To ensure that the design features of each residential road within a subdivision reflect the role of the road within the overall road network
- To provide an acceptable level of access, safety and convenience for all road users within existing urban areas and new release areas, whilst ensuring acceptable levels of amenity and minimising traffic management issues in the particular locality.
- To provide appropriate road access for larger and special purpose vehicles including garbage and recycling trucks, fire trucks, delivery trucks etc.

The minimum requirements for the road hierarchy are shown in Table 2-2.

Table 2-2 Road Characteristics for Residential Road Networks

Street Type	Traffic Volume (VPD)	Target Speed (km/h)	Carriageway width (m)	Verge Width (m)	Road Reserve (m)	Pavement Type	Parking Provision in Road Reserve	Concrete Footpath	Shared Path	Recommended no. of dwellings:
Access Place	<100	15	3.5	3.5	10.5	Reinforced Concrete	1 hardstand verge space per 2 dwellings	No	No	10
Access Street	<300	40	6.5	3.5	13.5	Asphalt	Carriageway	No	No	30
Access Road	301-1,000	40	8	3.5	15	Asphalt	Carriageway	1.2m wide on one side	No	100
Minor Collector	1,001- 3,000	50	9.5	3.5	16.5	Asphalt	Carriageway	1.2m wide one side away from the kerb	Provide within the street pavement	300
Major Collector	3,001- 6,000	50	11.5	Min. 3.5	Min. 18.5	Asphalt	Carriageway	1.2 wide along one side away from the kerb	2.5 wide along one side	600
Sub- Arterial	>6,000	60		Design using road performance criteria and guides i.e. Austroads, RMS standards etc				-		

Source: Kiama Development Control Plan 2020 - Chapter 3.6 Common Requirements

3.0 Existing conditions

3.1 Travel behaviour

According to Kiama LSPS 2020, the below population characteristics were identified for Kiama:

- Median Age: 47
- Population: 26,100

The journey to work mode share is shown in Figure 3-1.

Figure 3–1 Travel mode choice

Source: Traffic and parking study, Bitzios consulting (2021) and Australian Bureau of Statistics Census data (2016).

The dominant method of travel for residents was by car (90 per cent). However, the most notable feature is the underuse of buses as well as bicycles. This can be justified by the older-than-average median age (38 for NSW) and the relatively low population. As the traffic demand is relatively low, the convenience of private vehicles dominates the need to use any other mode of transport. Additionally, the older median age means that active modes such as cycling and/or walking are usually less preferred over other modes.

3.2 Road network

This analysis aims to consider the hierarchy and capability of the existing surrounding network. The surrounding street network types around the development are shown in **Table 3-1**.

Street Name	TfNSW ⁽¹⁾	Function Type ⁽²⁾	Approximate Road Reserve (m) ⁽³⁾
Princes Highway (A1)	State	Primary	27
Jamberoo Road	Regional	Arterial	19
Jerrara Road	Local	Local	15
Old Saddleback Road	Local	Local	10
Long Brush Road	Local	Local	13
Saddleback Mountain Road	Local	Sub-arterial	13
Bland Street	Local	Local	23

Table 3-1 Road characteristics for existing road networks

Notes: 1. Obtained from NSW Road Network Classifications (TfNSW) 2. Obtained from NSW Transport Theme – Road Segment 3. Calculated from SIX Maps. Accurate measurements will be required for the in-depth analysis/assessment. 4. This table has excluded any minor vehicular tracks.

The characteristics of the key road network, surrounding the subject site are (refer to Figure 2-1):

- Jamberoo Road is a west-east regional road to the north of the site. It has one lane in each direction and connects Jamberoo with Princes Highway (A1) and the existing Kiama township. The signposted speed limit in the vicinity of the site is 60km/h. The road is sealed with a 6.5m wide carriageway and is segmented by a double centre line. It intersects with Spring Creek Drive which provides on ramp and off ramp for the northbound direction of A1. Brown Street provides a southbound on ramp to A1 while Gipps Street/Collins Street provides an off ramp from A1, which connect with Jamberoo Road/Terralong Street.
- Bland Street is a local road located east of the site. It has one lane in each direction and connects the site to
 Princes Highway and the existing Kiama township. The signposted speed limit is 50km/h. The road is sealed
 with a 7.7m wide carriageway and is not segmented by any centre line marking. A northbound on ramp to A1
 intersects with Bland Street at Eugene Street.
- Saddleback Mountain Road is a local sub-arterial road located south of the site. It has one lane in each direction and connects Old Saddleback Road to the existing Kiama township. The signposted speed limit is 60km/h. The road is sealed and has a 6m wide carriageway with a signposted speed limit of 60km/h. Saddleback Mountain Road also connects with South Kiama Drive just to the east of Kiama High School, where South Kiama Drive provides on and off ramps to A1 southbound and an off ramp for the northbound direction of A1.
- Old Saddleback Road is a local road located south of the site. It has one lane in each direction, however, has
 no centre line marking. It is connected to Bland Street to the north and Saddleback Mountain Road to the
 south. The road is sealed and has a 4.5m wide carriageway with a signposted speed limit of 60km/h.

3.3 Road Safety

The number of crashes and the type of casualties recorded in Kiama between 2016 and 2020 are shown in **Figure 3–2**, and listed below in their casualty catergories:

- Fatal = 1
- Serious Injury = 11
- Moderate Injury = 19
- Minor/other injury = 5
- Non-casualty = 27

Figure 3–2 Crash data

Kiama west's road network has less casualties than the Kiama town centre as it only had 3 vehicle crashes (2 noncasualty and 1 serious injury) along Jamberoo Road.

3.4 Public transport

3.4.1 Bus network

Kiama West currently has access to bus route 125 on Jamberoo Road that provides bus connection between Jamberoo and Kiama. Other bus services are also available in the existing Kiama township on the eastern side of Princes Highway, which is over 1km walking distance from Kiama West. The typical frequency for the bus network during the peak period (6:30am to 10:00am and 3:00pm – 7:00pm) are shown as follows:

- Route 125: 1 service
- Route 71: 3 services
- Route 126: 2 services

3.4.2 Train network

Kiama has access to the train network through the South Coast Line (SCO) which connects Bomaderry to the south and Bondi Junction via Central to the north. The train heading north has a typical frequency of six services during the peak period and one service per hour outside of peak period. The train heading south has a typical frequency of three services during the peak period and one service every two hours outside of peak period.

3.5 Active transport

The existing cycleways are shown in **Figure 3–4**. There is a shared path in the northeastern subdivision that connects Jamberoo Road and a short section to the east as part of local natural reserves. However, the rest of the cycle facilities close to the site are usually on-road cycleway that mixes with other vehicular traffic. Together with hilly topography, this caused an obstacle to promote the bicycle mode share.

3.6 Intersection performance

A SIDRA model has been prepared for the critical intersections around the precinct to understand the existing network performance and to test the impacts associated with the proposal. Intersection performance has been assessed for the weekday AM and PM peak hours for the intersections including (**Figure 3–5**):

- 1. Long Brush Road / Old Saddleback Road
- 2. Old Saddleback Road / Saddleback Mountain Road
- 3. Saddleback Mountain Road / South Kiama Drive
- 4. South Kiama Drive / Manning Street
- 5. Bland Street / Old Saddleback Road
- 6. Bland Street / Eugene Street
- 7. Bland Street / Shoalhaven Street
- 8. Jamberoo Road / Banksia Drive
- 9. Jamberoo Road / Terralong Street / Spring Creek Road

Figure 3–5 Location of the modelled intersections

Source: Nearmap with SCT annotation, 2022

3.6.1 Key assumptions for base year model

Key assumptions used to develop the base year models are discussed below:

3.6.1.1 Traffic data

Traffic turning counts for the nine intersections for the base year were collected on 21 July 2022. Based on the highest network traffic volume, the peak hours for the data are specified below:

- Weekday AM peak hour: 8:15 am to 9:15 am
- Weekday PM peak hour: 3:00 pm to 4:00 pm.

3.6.1.2 Site layouts

Intersection layouts were derived from a combination of the Nearmap imagery and Google Streetview.

3.6.2 Model calibration

The intersection models were calibrated using the input data to reflect observations of traffic behaviours on site. One of the key goals is to calibrate the models such that the degree of saturation of all movements was 1.0 or below. This is a standard procedure to ensure that the models are not over-predicting congestion under current conditions.

3.6.3 Intersection level of service

Intersection Level of Service (LoS) is a typical design tool used by traffic engineers to identify when roads are congested. The Level of Service as defined in TfNSW Traffic Modelling Guidelines is provided in **Table 3-2**.

Table 3-2 Level of Service definitions

Level of Service	Average delay per vehicle (seconds)	Performance explanation
А	Less than 14.5	Good operation
В	14.5 to 28.4	Good with acceptable delays and spare capacity
С	28.5 to 42.4	Satisfactory
D	42.5 to 56.4	Operating near capacity
E	56.5 to 70.4	At capacity, at signals incidents will cause excessive delays. Roundabouts require other control method.
F	70.5 or greater	At capacity, at signals incidents will cause excessive delays. Roundabouts require other control method.

Source: Roads and Maritime Services (2002), Traffic Modelling Guidelines

In addition, **Degree of Saturation (DoS)** is included to complement Level of Service. It is a measure of the volume/capacity for the worst turning movement at the intersection. DoS is one implies that the turning movement is at capacity.

3.6.4 2022 intersection performance

The outcomes of the intersection modelling are presented in **Table 3-3** based on a modelling assessment by SIDRA 9 software.

Table 3-3 Existing (2022) intersection performance

Internetion	We	ekday AM p	eak	Weekday PM peak			
Intersection	DoS	Delay	LoS	DoS	Delay	LoS	
Old Saddleback Road and Long brush Road	0.01	5.6	А	0.02	5.6	А	
Old Saddleback Road and Saddleback Mountain Road	0.02	5.6	А	0.02	5.6	А	
South Kiama Drive and Saddleback Mountain Road	0.28	8.9	А	0.19	7.5	А	
South Kiama Drive and Manning Street	0.47	9.2	А	0.35	9.1	Α	
Bland Street and Old Saddleback Road	0.06	8.8	А	0.08	8.5	Α	
Bland Street and Eugene Street	0.25	10.5	А	0.27	10.9	Α	
Shoalhaven Street and Bland Street	0.24	7.8	А	0.21	7.7	Α	
Jamberoo Road and Banksia Drive	0.11	10.1	А	0.13	10.1	Α	
Jamberoo Road and Spring Creek Road	0.16	8.9	А	0.24	10.4	Α	

The SIDRA results show that the network currently performs at a Level of Service A with sufficient remaining capacity to accommodate additional trips.

A summary of the detailed SIDRA modelling outputs is included in Appendix A.

4.0 The proposed development

4.1 Proposed master plan of Kiama West

Located about 1.5km away from the Kiama town centre, the subject site is envisaged to be a thriving, sustainable and well-serviced mixed-use development at Kiama West, providing a diverse mix of housing opportunities nestled within a scenic landscape setting.

The site is proposed to have higher intensity land use along Spring Creek and provide place activation of small-scale retail, food and beverage with a focus on local produce, hotel and school.

Due to the topography of the site, the edges and interface are visually sensitive. The master plan proposes to make these areas as open as possible and respond to the particular situation with large lots, open space or other uses that complement the immediate locality and view.

The master plan is shown in Figure 4-1 which indicates a wide range of residential types across the site.

Figure 4-1 Proposed master plan

Source: E8urban, 2022

4.2 Development yield

The total property area would be about 1,205,591m² for the entire development. **Table 4-1** shows a breakdown of 1,103 dwellings by different types of housing. There would also be some supplementary/ancillary non-residential uses including homesteads, local centres and colleges on-site to service future residents.

Table	4-1	Develo	pment	vield
1 01010		201010		J 1010

Residential type	Proposed yield for the site
Large lots	22 dwellings
Low-density house	233 dwellings
Gully block	175 dwellings
Medium density - Mews	181 dwellings
Medium density	67 dwellings
Apartments	425 dwellings
Total	1,103 dwellings

Source: E8urban, 2022

4.3 Road network and hierarchy

The proposed street network aims at increasing the site's permeability with a tier of proposed streets considering, as shown in **Figure 4-2**:

- Distribution of vehicular traffic across multiple access points for greater connectivity to the external and existing road network
- A north-south spine from Jamberoo Road with a loop road to service the southern part of the site
- Local roads to further augment the permeability of the developable blocks
- Access roads within the community titles
- Bushfire roads are mainly located to the west which has frontages to the rural land area.

 Table 4-2 compares the proposed cross-section and the DCP requirement. The proposed cross-sections are detailed in Figure 4-5.

Source: E8urban, 2022

Table 4-2 Cross-section changes and justifications

Road Name	DCP / proposal			Cross section (m)	Justification	
Road Name	DCP / proposal	Verge	Parking	Carriageway	Parking	Verge	JUSTIFICATION
	Kiama DCP	3.5	-	3.5	-	3.5	 Adopting a 2.5m wide parking space is acceptable which provides more generous space for the passengers and
			Т	otal road reserve: 10	0.5		doors swinging out.
Access Place/ Mew Street		1.75	2.5	3.5	2.5	1.75	 The proposed width of the carriageway is the same as the DCP's width.
	Proposed design	1.70	2.0	0.0	2.0	1.70	 The proposed road reserve is wider than DCP mainly due to the varied flexi zones/ parking. A total of 1.5m
				Total road reserve:	12		deviations is durable
	Kiama DCP	3.5		9.5		3.5	 Adopting a 2.5m wide parking space is acceptable which provides more generous space for the passengers and
	Kiama DCP		Т	otal road reserve: 16	6.5		doors swinging out.
Local Road	Proposed design	3.5	2.5	4.5	2.5	3.5	 The proposed widths of the carriageway and road reserve are the same as the DCP's width.
Local Road		0.0	2.0		2.0	0.0	 A 1.2m wide footpath is provided on both sides of the verge, which is consistent with the DCP.
			٦	otal road reserve: 1	6.5		verge, which is consistent with the Dor .
		Min 3.5		11.5		Min 3.5	 Adopting a 2.5m wide parking space is acceptable which provides more generous space for the passengers and
Local Road Major Collector/ Spine Road	Kiama DCP						doors swinging out.
			Tota	al road reserve: Min	18.5		 The proposed width of the carriageway is the same as the DCP's width, which satisfies two-way traffic and two parking lanes.
							 The proposed road reserve satisfies the DCP where a wider verge will accommodate a 1.2m footpath and 2.5m
-F		3.75	2.5	6.5	2.5	3.75	shared path.
	Proposed design			Total road reserve:	19	 There is a variation to a 14m road reserve which deals with protected vegetation on one side. The widths of the carriageway and verge are consistent with the DCP. 	

Figure 4-5 Proposed cross-section design

Source: E8urban, 2022

4.4 Active transport connections

According to Figure 4-3, the proposed active transport facility and network would contain a mixture of:

- A shared path on the loop road
- A shared path on edge of an open space
- Shared path bike lane on road verge path
- Bridge shared path.

The proposed shared path system would connect with the existing shared path to the east of the site to facilitate cyclists to access the facilities and destinations.

4.5 Public transport connections

The proposed loop road has been designed to be bus capable and a total of five bus stops would be provided for coverage of the whole development. The bus coverage would facilitate the residents to use public transport. The future bus routes could connect with Bland Street to the east and Jamberoo Road to the north (**Figure 4-4**).

5.0 Traffic and transport impact appraisal

5.1 Trip generation

The trip generation rates for Kiama West were derived based on the RMS '*Guide to Traffic Generating Developments* (2013)', which are shown in **Table 5-1**.

Table 5-1 Regional average trip generation rates

Time period	Trips rates for low-density housing
AM Peak hour	0.71 vehicle trips per dwelling
PM Peak hour	0.78 vehicle trips per dwelling

Source: Guide to Traffic Generating Developments (2013), Roads & Maritime Services

It is noted that the trip rates for high-density apartments in regional NSW are 0.53 and 0.32 vehicle trips per dwelling for AM and PM peak hours, which are lower than those for low-density residential dwellings. Considering the public transport availability and the locality of the site, the trip rates for low-density housing have been applied to all dwelling types such that the worst-case scenario can be assessed. Therefore, the vehicle trips generated associated with the proposal during the AM and PM peak periods are shown in **Table 5-2**:

Table 5-2 Trip generation

Residential type	Yield	AM Trip rate	PM Trip rate	AM Trips	PM Trips
Mews	181 dwellings			128 trips	141 trips
Medium density	67 dwellings		47 trips		
Low density	233 dwellings	0.71 vehicle	0.78 vehicle	165 trips	181 trips
Gully	175 dwellings	trips per dwelling	trips per dwelling	124 trips	136 trips
Apartment	425 dwellings			301 trips	331 trips
Large lots	22 dwellings			15 trips	17 trips
Total	1,103 dwellings	-	-	783 trips	860 trips

Therefore, a total of 783 and 860 vehicle trips could be generated as a result of the proposed development during the AM and PM peak hours respectively. Additionally, per the *Kiama South Sub-division TIA* (Bitzios 2018), it assumed that there is a directional split of 30% in and 70% out in the AM peak and vice versa in the PM peak.

5.2 Trip distribution

There are seven access points for the development to connect with the existing road network. The origin and destination pairs were identified based on potential dwelling locations, routing options and major destinations. The assumptions include:

- The split of residential dwellings in the northern part and southern parts is about 30%:70%.
- Given the access routes and the locations of the on-ramp/off-ramp of A1, the split of development traffic using Jamberoo Road, Bland Street and Longbrush Road are assumed to be 20%, 60% and 20%, respectively.
- According to the TRACKS model obtained in *Kiama South Sub-division* (Bitzios, 2018), the residents of Kiama are mainly heading to destinations to the north of Kiama such as Wollongong, Kiama town centre and destinations to the north of Kiama such as Nowra and Bomaderry. In particular, the distributions are shown below:
 - 51% to/from the north (such as Wollongong)
 - 33% to/from the east (Kiama town centre)

- 16% to/from the south (such as Nowra)
- The vehicle trips to the network are distributed at each turning movement in line with the modelled intersections.

5.3 Road network impact

5.3.1 Modelling scenarios

Modelling was undertaken for 2036 AM peak and PM peak hours which assesses a 10-year horizon year after the development is opened (estimated in 2026). The scenarios for the future year include:

- Future year base case (including Kiama South planning proposal)
- Future base case with the Kiama West planning proposal.

5.3.2 Future year base case

5.3.2.1 Background growth

From the traffic volume counters (Station ID: 07804), an average annual growth rate of 1.4 per cent was derived to forecast the 2036 background traffic volumes. This results in a total background growth of about 21 per cent from 2022 to 2036.

5.3.2.2 Kiama South Planning Proposal

It is noted that an approved planning proposal close to the subject development would have a cumulative impact on the road network in the vicinity of the site, which is an approved subdivision for 455 lots located to the south of the proposal. The predicted traffic generation was taken into consideration as part of the future year base case.

Bitzios Consulting estimated the trip generation for Kiama South subdivision as shown in Table 5-3.

Table 5-3 Trip generation for Kiama South Planning Proposal

Yield	AM Trip rate	PM Trip rate	AM Trips	PM Trips
740 dwellings	0.71 vehicle trips per dwelling	0.78 vehicle trips per dwelling	525 trips	577 trips

Source: Kiama South Sub-Division Revised Traffic Impact Assessment, 2018

Hence, the vehicle trips associated with Kiama South subdivision were assigned at relevant modelled intersections to understand the cumulative impact on top of the background traffic growth.

5.3.3 Intersection performance

All intersections are expected to still operate at an acceptable level of service during the peak hours in 2036, including future background traffic growth, Kiama South Planning Proposal and proposed Kiama West (the subject proposal) as shown in **Table 5-4**. Only at the intersection of South Kiama Drive and Saddleback Mountain Road, the level of service indicates one level drop for both peak hours. However, the performance of LoS C and B are still acceptable from a capacity perspective.

A summary of the detailed SIDRA modelling outputs is included in **Appendix A**.

Table 5-4 Intersection performance

Intersection	Fut	ure year base (203	6)	Future year base with development (2036)								
intersection	DoS	Delay	LoS	DoS	Delay	LoS						
Weekday AM Peak												
Old Saddleback Road and Long brush Road	0.01	5.6	А	0.05	5.7	А						
Old Saddleback Road and Saddleback Mountain Road	0.02	5.6	А	0.08	5.8	А						
South Kiama Drive and Saddleback Mountain Road	0.45	18.7	В	0.62	29.3	С						
South Kiama Drive and Manning Street	0.88	16.5	В	0.91	19.4	В						
Bland Street and Old Saddleback Road	0.07	8.9	А	0.30	11.3	А						
Bland Street and Eugene Street	0.30	11.4	А	0.60	13.5	А						
Shoalhaven Street and Bland Street	0.29	8.2	А	0.35	8.9	А						
Jamberoo Road and Banksia Drive	0.13	10.1	А	0.22	10.1	А						
Jamberoo Road and Spring Creek Road	0.20	10.1	А	0.23	11.3	А						
	Wee	ekday PM Peak										
Old Saddleback Road and Long brush Road	0.02	5.6	А	0.13	6.0	А						
Old Saddleback Road and Saddleback Mountain Road	0.02	5.6	А	0.15	5.6	А						
South Kiama Drive and Saddleback Mountain Road	0.34	14.2	А	0.41	20.7	В						
South Kiama Drive and Manning Street	0.58	10.8	А	0.59	11.2	А						
Bland Street and Old Saddleback Road	0.09	8.6	Α	0.32	9.8	А						
Bland Street and Eugene Street	0.33	11.8	А	0.53	16.3	В						
Shoalhaven Street and Bland Street	0.21	7.7	А	0.37	9.7	А						
Jamberoo Road and Banksia Drive	0.16	10.1	А	0.24	10.1	А						
Jamberoo Road and Spring Creek Road	0.30	12.6	А	0.31	15.0	В						

5.4 Public transport impact

As stated in **Section 4.5**, the loop road within the site would be bus capable, enabling the site to be covered by bus services. With the connection of bus service to Bland Street and Jamberoo Road, it is expected that the bus attractiveness would increase.

The on-demand minibus service would link the users of the development closely with the public transport hub, activity centres and services. This would not only facilitate the public transport user group but also encourage the mode shift of those car users to sustainable transport. It is envisaged that the minibus passengers would use online booking or mobile applications to ensure access to the service.

The public transport network is expected to be able to cope with the additional trips generated by the proposed development given a relatively low net increase in the public transport demand.

5.5 Active transport impact

Active transport can be one of the most convenient modes for short-distance trips given the provision of the nonresidential components within the development. The road network within the site is generally slow-speed and cyclistfriendly, providing numerous crossing opportunities and reducing travel distance between residential areas and the town centre.

The major north-south spine, the loop road and bush fire roads are proposed to accommodate cycle paths, which facilitate the site residents to cycle to a wider area.

6.0 Conclusion

The planning proposal would see an uplift of 1,103 residential dwellings of various housing products located to the west of the existing Kiama township and town centre at Kiama West. In summary:

- The rezoning of the site responds to the population growth and housing target set out in the LSPS.
- There are plans in place that work towards improving the public transport system and active transport to reduce dependence on private vehicles and support a sustainable outcome associated with the proposal.
- The proposed development would generate a net increase of over 783 and 860 vehicle trips during AM and PM peak hours respectively.
- A SIDRA modelling confirms that the network would operate at satisfactory levels in all modelled periods including a future year with development and does not require any upgrades given sufficient remaining capacity on the local road network.
- The major road network within the site would be bus-capable whereas the internal street network increases
 permeability and accessibility for active transport, encouraging green transport use for the site.

APPENDIX A SIDRA model output

MOVEMENT SUMMARY V Site: 1AM [OLD_LON_22_AM_X (Site Folder: Base Year AM)]

8:15AM - 9:15AM 2022 Site Category: BASE YEAR Give-Way (Two-Way)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Old	Saddleba			,,,	110	000		Voll					
1 2	L2 T1	5 16 21	0.0 6.3 4.8	5 17 22	0.0 6.3 4.8	0.012 0.012 0.012	5.5 0.0 1.3	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.14 0.14 0.14	0.00 0.00 0.00	57.1 58.7 58.3
	n: Old \$	Saddleba	ck Road	(N)										
8 9 Appro	T1 R2 bach	19 3 22	0.0 0.0 0.0	20 3 23	0.0 0.0 0.0	0.012 0.012 0.012	0.0 5.5 0.8	LOS A LOS A NA	0.0 0.0 0.0	0.1 0.1 0.1	0.02 0.02 0.02	0.08 0.08 0.08	0.02 0.02 0.02	59.2 57.0 58.9
		Brush Ro			0.0	0.0.12					0.01		0.01	
10 12	L2 R2	1 14	0.0 0.0	1 15	0.0 0.0	0.010 0.010	5.6 5.5	LOS A LOS A	0.0 0.0	0.2 0.2	0.06 0.06	0.58 0.58	0.06 0.06	53.5 53.0
Appro All	oach	15 58	0.0	16 61	0.0	0.010	5.5 2.2	LOS A	0.0	0.2	0.06	0.58	0.06	53.0 57.0
Vehic	les	00		01		0.012	2.2		0.0	0.2	0.00	0.20	0.00	07.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / IPC | Processed: Thursday, 6 October 2022 5:10:22 PM Project: St/Projects/SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation/SCT_0337_Kiama West_SIDRA_sc.sip9

MOVEMENT SUMMARY V Site: 2AM [OLD_SAD_22_AM_X (Site Folder: Base Year AM)]

8:15AM - 9:15AM 2022 BASE YEAR Site Category: BASE YEAR Give-Way (Two-Way)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO' [Total veh/h		Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South	n: Sade			Road (S)		v/c	sec	_	veh	m	_	_	_	km/h
2	T1 R2	4 3	0.0 0.0	4	0.0 0.0	0.004 0.004	0.0 5.5	LOS A LOS A	0.0 0.0	0.1 0.1	0.08 0.08	0.25 0.25	0.08 0.08	57.5 55.4
Appro		7	0.0	7	0.0	0.004	2.4	NA	0.0	0.1	0.08	0.25	0.08	56.6
East:	Saddl	eback Mo	ountain F	Road (E)										
4	L2	3	0.0	3	0.0	0.014	5.6	LOS A	0.0	0.3	0.03	0.59	0.03	53.6
6	R2	18	5.6	19	5.6	0.014	5.5	LOS A	0.0	0.3	0.03	0.59	0.03	52.8
Appro	oach	21	4.8	22	4.8	0.014	5.5	LOS A	0.0	0.3	0.03	0.59	0.03	52.9
North	: Old S	Saddleba	ck Road											
7	L2	29	0.0	31	0.0	0.019	5.5	LOS A	0.0	0.0	0.00	0.51	0.00	54.2
8	T1	4	0.0	4	0.0	0.019	0.0	LOS A	0.0	0.0	0.00	0.51	0.00	55.6
Appro	oach	33	0.0	35	0.0	0.019	4.9	NA	0.0	0.0	0.00	0.51	0.00	54.3
All Vehic	les	61	1.6	64	1.6	0.019	4.8	NA	0.0	0.3	0.02	0.51	0.02	54.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / IPC | Processed: Thursday, 6 October 2022 5:10:22 PM Project: St/Projects/SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation/SCT_0337_Kiama West_SIDRA_sc.sip9
MOVEMENT SUMMARY V Site: 3AM [SOU_SAD_22_AM_X (Site Folder: Base Year AM)]

8:15AM - 9:15AM 2022 Base Year Site Category: BASE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Sout	th Kiama	Drive (S)										
1a 3	L1 R2	157 319	2 15	165 336	1.3 4.7	0.278 0.278	3.1 3.6	LOS A LOS A	0.0 0.0	0.0 0.0	0.00 0.00	0.46 0.46	0.00 0.00	38.4 37.6
Appro		476 Kiama D	17 Drive (E)	501	3.6	0.278	3.4	NA	0.0	0.0	0.00	0.46	0.00	38.0
4 6a	L2 R1	184 75	10 1	194 79	5.4 1.3	0.111 0.045	3.4 3.6	LOS A LOS A	0.0 0.2	0.0 1.6	0.00 0.42	0.45 0.49	0.00 0.42	37.8 37.0
Appro		259	11	273	4.2	0.111	3.5	NA	0.2	1.6	0.12	0.46	0.12	37.6
North	West:	Saddleb	ack Mour	ntain Roa	d									
27a 29a	L1 R1	161 51	1 0	169 54	0.6 0.0	0.107 0.110	4.0 8.9	LOS A LOS A	0.5 0.4	3.5 2.8	0.40 0.62	0.53 0.79	0.40 0.62	36.8 36.3
Appro	bach	212	1	223	0.5	0.110	5.2	LOS A	0.5	3.5	0.46	0.59	0.46	36.6
All Vehic	les	947	29	997	3.1	0.278	3.8	NA	0.5	3.5	0.14	0.49	0.14	37.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / IPC | Processed: Thursday, 6 October 2022 5:10:23 PM Project: St/Projects/SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation/SCT_0337_Kiama West_SIDRA_sc.sip9

MOVEMENT SUMMARY V Site: 4AM [SOU_MAN_22_AM_X (Site Folder: Base Year AM)]

8:15AM - 9:15AM BASE Site Category: BASE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INF VOLL		DEM/ FLO		Deg. Satn		Level of Service	95% BA QUE		Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate	Cycles	
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: Hen	ley Avenı	le											
1	L2	17	0.0	18	0.0	0.045	4.9	LOS A	0.2	1.6	0.54	0.55	0.54	34.6
2	T1	16	0.0	17	0.0	0.045	4.5	LOS A	0.2	1.6	0.54	0.55	0.54	37.9
3	R2	3	0.0	3	0.0	0.045	7.9	LOS A	0.2	1.6	0.54	0.55	0.54	35.9
3u	U	1	0.0	1	0.0	0.045	9.2	LOS A	0.2	1.6	0.54	0.55	0.54	38.0
Appr	oach	37	0.0	39	0.0	0.045	5.1	LOS A	0.2	1.6	0.54	0.55	0.54	36.7
East	Bonai	ira Street												
4	L2	13	0.0	14	0.0	0.224	4.2	LOS A	1.3	9.1	0.50	0.64	0.50	33.2
5	T1	34	5.9	36	5.9	0.224	4.0	LOS A	1.3	9.1	0.50	0.64	0.50	31.0
6	R2	159	2.5	167	2.5	0.224	7.3	LOS A	1.3	9.1	0.50	0.64	0.50	36.6
6u	U	1	0.0	1	0.0	0.224	8.6	LOS A	1.3	9.1	0.50	0.64	0.50	15.8
Appr	oach	207	2.9	218	2.9	0.224	6.6	LOS A	1.3	9.1	0.50	0.64	0.50	35.9
North	n: Man	ning Stre	et											
7	L2	94	4.3	99	4.3	0.288	2.9	LOS A	1.9	14.0	0.29	0.51	0.29	36.3
8	T1	23	4.3	24	4.3	0.288	2.5	LOS A	1.9	14.0	0.29	0.51	0.29	37.8
9	R2	206	4.4	217	4.4	0.288	6.0	LOS A	1.9	14.0	0.29	0.51	0.29	37.2
9u	U	25	4.0	26	4.0	0.288	7.3	LOS A	1.9	14.0	0.29	0.51	0.29	38.8
Appr	oach	348	4.3	366	4.3	0.288	5.0	LOS A	1.9	14.0	0.29	0.51	0.29	37.2
West	: Sout	h Kiama I	Drive											
10	L2	412	2.9	434	2.9	0.469	4.2	LOS A	3.5	25.0	0.56	0.57	0.56	36.9
11	T1	51	5.9	54	5.9	0.469	3.9	LOS A	3.5	25.0	0.56	0.57	0.56	33.6
12	R2	15	6.7	16	6.7	0.469	7.3	LOS A	3.5	25.0	0.56	0.57	0.56	36.5
12u	U	2	0.0	2	0.0	0.469	8.5	LOS A	3.5	25.0	0.56	0.57	0.56	36.2
Appr	oach	480	3.3	505	3.3	0.469	4.3	LOS A	3.5	25.0	0.56	0.57	0.56	36.8
All Vehi	cles	1072	3.5	1128	3.5	0.469	5.0	LOS A	3.5	25.0	0.46	0.56	0.46	36.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:24 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

MOVEMENT SUMMARY V Site: 5AM [BLA_OLD_22_AM_X (Site Folder: Base Year AM)]

8:15AM - 9:15AM 2022 Site Category: BASE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn		PUT JMES	DEM FLO		Deg. Satn		Level of Service	95% BA QUE		Prop. E Que	ffective Stop	Aver.	Aver. Speed
		[Total	HV]	[Total	HV]	Jaur	Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m			- ,	km/h
Sout	h: Old	Saddleba	ack Road	l (S)										
1	L2	2	0.0	2	0.0	0.058	4.0	LOS A	0.3	2.0	0.15	0.60	0.15	34.5
2	T1	1	0.0	1	0.0	0.058	3.7	LOS A	0.3	2.0	0.15	0.60	0.15	35.1
3	R2	63	4.8	66	4.8	0.058	6.9	LOS A	0.3	2.0	0.15	0.60	0.15	29.3
3u	U	1	0.0	1	0.0	0.058	8.3	LOS A	0.3	2.0	0.15	0.60	0.15	29.3
Appr	oach	67	4.5	71	4.5	0.058	6.8	LOS A	0.3	2.0	0.15	0.60	0.15	29.6
East	Bland	Street (E	Ξ)											
4	L2	35	5.7	37	5.7	0.052	3.9	LOS A	0.3	1.8	0.07	0.48	0.07	34.7
5	T1	27	3.7	28	3.7	0.052	3.6	LOS A	0.3	1.8	0.07	0.48	0.07	40.1
6	R2	4	25.0	4	25.0	0.052	6.9	LOS A	0.3	1.8	0.07	0.48	0.07	35.7
6u	U	2	0.0	2	0.0	0.052	8.2	LOS A	0.3	1.8	0.07	0.48	0.07	32.2
Appr	oach	68	5.9	72	5.9	0.052	4.1	LOS A	0.3	1.8	0.07	0.48	0.07	37.1
North	n: Old S	Saddleba	ick Road	(N)										
7	L2	8	12.5	8	12.5	0.011	4.7	LOS A	0.1	0.4	0.29	0.51	0.29	34.8
8	T1	1	0.0	1	0.0	0.011	4.2	LOS A	0.1	0.4	0.29	0.51	0.29	37.0
9	R2	1	0.0	1	0.0	0.011	7.4	LOS A	0.1	0.4	0.29	0.51	0.29	39.1
9u	U	1	0.0	1	0.0	0.011	8.8	LOS A	0.1	0.4	0.29	0.51	0.29	39.6
Appr	oach	11	9.1	12	9.1	0.011	5.3	LOS A	0.1	0.4	0.29	0.51	0.29	35.9
West	: Blan	d Street (W)											
10	L2	1	0.0	1	0.0	0.058	4.3	LOS A	0.3	2.0	0.22	0.45	0.22	39.3
11	T1	57	1.8	60	1.8	0.058	3.9	LOS A	0.3	2.0	0.22	0.45	0.22	39.2
12	R2	5	0.0	5	0.0	0.058	7.1	LOS A	0.3	2.0	0.22	0.45	0.22	35.9
12u	U	1	0.0	1	0.0	0.058	8.5	LOS A	0.3	2.0	0.22	0.45	0.22	42.0
Appr	oach	64	1.6	67	1.6	0.058	4.3	LOS A	0.3	2.0	0.22	0.45	0.22	39.0
All Vehic	cles	210	4.3	221	4.3	0.058	5.1	LOS A	0.3	2.0	0.15	0.51	0.15	35.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:19 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

MOVEMENT SUMMARY W Site: 6AM [BLA_EUG_22_AM_X (Site Folder: Base Year AM)]

8:15AM - 9:15AM 2022 Site Category: BASE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	n: Eug	ene Stree			,,,									
1	L2	1	0.0	1	0.0	0.029	6.2	LOS A	0.2	1.2	0.61	0.62	0.61	27.3
2	T1	10	10.0	11	10.0	0.029	6.4	LOS A	0.2	1.2	0.61	0.62	0.61	35.2
3	R2	9	0.0	9	0.0	0.029	9.1	LOS A	0.2	1.2	0.61	0.62	0.61	33.3
3u	U	1	0.0	1	0.0	0.029	10.5	LOS A	0.2	1.2	0.61	0.62	0.61	22.3
Appr	oach	21	4.8	22	4.8	0.029	7.8	LOS A	0.2	1.2	0.61	0.62	0.61	33.7
East:	Bland	Street (E)											
4	L2	9	0.0	9	0.0	0.246	3.9	LOS A	1.6	11.3	0.05	0.60	0.05	33.7
5	T1	65	6.2	68	6.2	0.246	3.6	LOS A	1.6	11.3	0.05	0.60	0.05	37.3
6	R2	300	2.7	316	2.7	0.246	6.7	LOS A	1.6	11.3	0.05	0.60	0.05	40.3
6u	U	1	0.0	1	0.0	0.246	8.1	LOS A	1.6	11.3	0.05	0.60	0.05	40.5
Appr	oach	375	3.2	395	3.2	0.246	6.1	LOS A	1.6	11.3	0.05	0.60	0.05	39.8
West	: Bland	d Street (\	W)											
10	L2	68	5.9	72	5.9	0.155	6.1	LOS A	0.8	5.7	0.49	0.61	0.49	37.3
11	T1	63	3.2	66	3.2	0.155	5.7	LOS A	0.8	5.7	0.49	0.61	0.49	37.5
12	R2	1	0.0	1	0.0	0.155	8.8	LOS A	0.8	5.7	0.49	0.61	0.49	27.6
12u	U	2	0.0	2	0.0	0.155	10.2	LOS A	0.8	5.7	0.49	0.61	0.49	25.8
Appr	oach	134	4.5	141	4.5	0.155	6.0	LOS A	0.8	5.7	0.49	0.61	0.49	37.2
All Vehic	cles	530	3.6	558	3.6	0.246	6.1	LOS A	1.6	11.3	0.18	0.60	0.18	39.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:20 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

MOVEMENT SUMMARY V Site: 7AM [SHO_BLA_22_AM_X (Site Folder: Base Year AM)]

8:15AM - 9:15AM 2022 Site Category: BASE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	nt Perfor	rmance										
Mov ID	Turn		PUT JMES HV] %	DEM FLC [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Sho	alhaven	Street (S))										
1	L2	29	17.2	31	17.2	0.044	3.5	LOS A	0.0	0.1	0.01	0.20	0.01	38.4
2	T1	40	20.0	42	20.0	0.044	0.0	LOS A	0.0	0.1	0.01	0.20	0.01	34.8
3	R2	1	0.0	1	0.0	0.044	6.5	LOS A	0.0	0.1	0.01	0.20	0.01	15.0
Appr	oach	70	18.6	74	18.6	0.044	1.5	NA	0.0	0.1	0.01	0.20	0.01	36.8
East:	Acces	ss Road												
4	L2	1	0.0	1	0.0	0.016	0.2	LOS A	0.0	0.3	0.28	0.20	0.28	12.9
5	T1	6	0.0	6	0.0	0.016	1.1	LOS A	0.0	0.3	0.28	0.20	0.28	23.8
6	R2	11	0.0	12	0.0	0.016	0.8	LOS A	0.0	0.3	0.28	0.20	0.28	13.2
Appr	oach	18	0.0	19	0.0	0.016	0.9	LOS A	0.0	0.3	0.28	0.20	0.28	17.9
North	n: Shoa	alhaven S	Street (N))										
7	L2	26	0.0	27	0.0	0.238	7.4	LOS A	1.5	10.5	0.21	0.36	0.21	14.6
8	T1	104	10.6	109	10.6	0.238	0.2	LOS A	1.5	10.5	0.21	0.36	0.21	29.8
9	R2	343	2.3	361	2.3	0.238	3.6	LOS A	1.5	10.5	0.21	0.36	0.21	36.6
Appr	oach	473	4.0	498	4.0	0.238	3.1	NA	1.5	10.5	0.21	0.36	0.21	34.6
West	: Blan	d Street												
10	L2	73	4.1	77	4.1	0.054	3.5	LOS A	0.2	1.6	0.09	0.46	0.09	36.0
11	T1	3	0.0	3	0.0	0.054	7.8	LOS A	0.2	1.6	0.09	0.46	0.09	24.6
12	R2	11	0.0	12	0.0	0.054	5.1	LOS A	0.2	1.6	0.09	0.46	0.09	34.7
Appr	oach	87	3.4	92	3.4	0.054	3.9	LOS A	0.2	1.6	0.09	0.46	0.09	35.3
All Vehic	cles	648	5.4	682	5.4	0.238	2.9	NA	1.5	10.5	0.18	0.35	0.18	34.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:21 PM Project: S:\Projects\SCT 00337 Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT 0337 Kiama West SIDRA sc.sip9

MOVEMENT SUMMARY V Site: 8AM [JAM_BAN_22_AM_X (Site Folder: Base Year AM)]

8:15AM - 9:15AM Site Category: BASE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ban	ksia Drive	;											
1 3	L2 R2	3 91	0.0 1.1	3 96	0.0 1.1	0.082 0.082	2.8 6.4	LOS A LOS A	0.4 0.4	2.8 2.8	0.23 0.23	0.59 0.59	0.23 0.23	23.3 39.5
3u Appro	U bach	1 95	0.0	1	0.0	0.082	8.1 6.3	LOS A LOS A	0.4	2.8 2.8	0.23 0.23	0.59 0.59	0.23	25.5 39.0
		eroo Roa	d (E)											
4 5 6u	L2 T1 U	54 78 4	1.9 1.3 0.0	57 82 4	1.9 1.3 0.0	0.090 0.090 0.090	4.2 4.4 10.1	LOS A LOS A LOS A	0.5 0.5 0.5	3.2 3.2 3.2	0.04 0.04 0.04	0.48 0.48 0.48	0.04 0.04 0.04	41.7 38.4 50.8
Appro	bach	136	1.5	143	1.5	0.090	4.5	LOSA	0.5	3.2	0.04	0.48	0.04	40.0
West	: Jamb	peroo Roa	ad (W)											
11 12 12u	T1 R2 U	120 2 1	1.7 0.0 0.0	126 2 1	1.7 0.0 0.0	0.108 0.108 0.108	3.9 7.6 9.4	LOS A LOS A LOS A	0.6 0.6 0.6	3.9 3.9 3.9	0.27 0.27 0.27	0.45 0.45 0.45	0.27 0.27 0.27	46.0 31.6 25.2
Appro	oach	123	1.6	129	1.6	0.108	4.0	LOS A	0.6	3.9	0.27	0.45	0.27	45.7
All Vehic	les	354	1.4	373	1.4	0.108	4.8	LOS A	0.6	3.9	0.17	0.50	0.17	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:16 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 9AM [JAM_SPR_22_AM_X (Site Folder: Base Year AM)]

8:15AM-9:15AM Site Category: BASE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLL [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
Sout	n: Huto	hinson S												
1	L2	1	0.0	1	0.0	0.004	4.8	LOS A	0.0	0.1	0.30	0.52	0.30	44.9
2	T1	1	0.0	1	0.0	0.004	5.8	LOS A	0.0	0.1	0.30	0.52	0.30	47.3
3	R2	1	0.0	1	0.0	0.004	8.1	LOS A	0.0	0.1	0.30	0.52	0.30	45.4
Appr	oach	3	0.0	3	0.0	0.004	6.2	LOS A	0.0	0.1	0.30	0.52	0.30	46.0
East:	Terral	ong Stree	et											
4	L2	1	0.0	1	0.0	0.060	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	57.7
5	T1	109	0.9	115	0.9	0.060	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.9
6	R2	297	1.7	313	1.7	0.159	6.2	LOS A	0.9	6.5	0.36	0.56	0.36	48.2
Appr	oach	407	1.5	428	1.5	0.159	4.5	NA	0.9	6.5	0.26	0.41	0.26	50.3
North	n: Sprir	ng Creek	Drive											
7	L2	101	1.0	106	1.0	0.058	6.0	LOS A	0.3	1.9	0.27	0.55	0.27	48.4
8	T1	1	0.0	1	0.0	0.042	6.8	LOS A	0.1	1.0	0.50	0.72	0.50	46.3
9	R2	25	4.0	26	4.0	0.042	8.9	LOS A	0.1	1.0	0.50	0.72	0.50	45.3
Appr	oach	127	1.6	134	1.6	0.058	6.6	LOS A	0.3	1.9	0.32	0.58	0.32	47.8
West	: Jamb	eroo Roa	ad											
10	L2	48	2.1	51	2.1	0.120	5.6	LOS A	0.0	0.1	0.00	0.13	0.00	54.8
11	T1	167	1.2	176	1.2	0.120	0.0	LOS A	0.0	0.1	0.00	0.13	0.00	57.2
12	R2	1	0.0	1	0.0	0.120	5.7	LOS A	0.0	0.1	0.00	0.13	0.00	49.7
Appr	oach	216	1.4	227	1.4	0.120	1.3	NA	0.0	0.1	0.00	0.13	0.00	56.5
All Vehic	les	753	1.5	793	1.5	0.159	4.0	NA	0.9	6.5	0.20	0.36	0.20	51.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:18 PM Project: S:\Projects\SCT 00337 Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT 0337 Kiama West SIDRA sc.sip9

MOVEMENT SUMMARY V Site: 1PM [OLD_LON_22_PM_X (Site Folder: Base Year PM)]

3:00PM - 4:00PM Site Category: BASE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO ^V [Total		Deg. Satn		Level of Service	95% BA QUE [Veh.		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	n: Old	Saddleba	ck Road	I (S)										
1	L2	11	0.0	12	0.0	0.018	5.5	LOS A	0.0	0.0	0.00	0.20	0.00	56.7
2	T1	22	0.0	23	0.0	0.018	0.0	LOS A	0.0	0.0	0.00	0.20	0.00	58.2
Appro	oach	33	0.0	35	0.0	0.018	1.9	NA	0.0	0.0	0.00	0.20	0.00	57.7
North	: Old	Saddleba	ck Road	(N)										
8	T1	9	0.0	9	0.0	0.008	0.0	LOS A	0.0	0.2	0.09	0.25	0.09	57.4
9	R2	7	0.0	7	0.0	0.008	5.5	LOS A	0.0	0.2	0.09	0.25	0.09	55.3
Appro	oach	16	0.0	17	0.0	0.008	2.4	NA	0.0	0.2	0.09	0.25	0.09	56.5
West	: Long	Brush Ro	bad											
10	L2	7	0.0	7	0.0	0.011	5.6	LOS A	0.0	0.2	0.07	0.57	0.07	53.5
12	R2	11	9.1	12	9.1	0.011	5.6	LOS A	0.0	0.2	0.07	0.57	0.07	52.5
Appro	oach	18	5.6	19	5.6	0.011	5.6	LOS A	0.0	0.2	0.07	0.57	0.07	52.9
All Vehic	les	67	1.5	71	1.5	0.018	3.0	NA	0.0	0.2	0.04	0.31	0.04	56.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / IPC | Processed: Thursday, 6 October 2022 5:10:30 PM Project: St/Projects/SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation/SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 2PM [OLD_SAD_22_PM_X (Site Folder: Base Year PM)]

3:00PM - 4:00PM Site Category: BASE YEAR Give-Way (Two-Way)

Vehi	cle M	ovement	t Perfo	rmance										
Mov ID	Turn	INP VOLU	MES	DEMA FLO	NS	Deg. Satn		Level of Service	95% BA QUE	EUE	Prop. E Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Sad	dleback N	lountain	Road (S)										
2	T1	11	0.0	12	0.0	0.010	0.0	LOS A	0.0	0.3	0.06	0.26	0.06	57.4
3	R2	9	0.0	9	0.0	0.010	5.5	LOS A	0.0	0.3	0.06	0.26	0.06	55.4
Appro	bach	20	0.0	21	0.0	0.010	2.5	NA	0.0	0.3	0.06	0.26	0.06	56.5
East:	Sadd	leback Mc	ountain I	Road (E)										
4	L2	11	0.0	12	0.0	0.021	5.6	LOS A	0.1	0.4	0.02	0.58	0.02	53.6
6	R2	22	0.0	23	0.0	0.021	5.5	LOS A	0.1	0.4	0.02	0.58	0.02	53.1
Appro	oach	33	0.0	35	0.0	0.021	5.5	LOS A	0.1	0.4	0.02	0.58	0.02	53.2
North	: Old S	Saddlebad	ck Road											
7	L2	16	0.0	17	0.0	0.011	5.5	LOS A	0.0	0.0	0.00	0.47	0.00	54.5
8	T1	4	0.0	4	0.0	0.011	0.0	LOS A	0.0	0.0	0.00	0.47	0.00	55.9
Appro	oach	20	0.0	21	0.0	0.011	4.4	NA	0.0	0.0	0.00	0.47	0.00	54.8
All Vehic	les	73	0.0	77	0.0	0.021	4.4	NA	0.1	0.4	0.03	0.46	0.03	54.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / IPC | Processed: Thursday, 6 October 2022 5:10:31 PM Project: St/Projects/SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation/SCT_0337_Kiama West_SIDRA_sc.sip9

MOVEMENT SUMMARY V Site: 3PM [SOU_SAD_22_PM_X (Site Folder: Base Year PM)]

3:00PM - 4:00PM Site Category: BASE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLL [Total veh/h	PUT JMES HV] veh/h	DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Sout		Drive (S)		70	110	000		Volt					NIII/II
1a 3	L1 R2	47 288	0 9	49 303	0.0 3.1	0.195 0.195	3.1 3.6	LOS A LOS A	0.0 0.0	0.0 0.0	0.00 0.00	0.47 0.47	0.00 0.00	38.4 37.6
Appro	oach	335	9	353	2.7	0.195	3.5	NA	0.0	0.0	0.00	0.47	0.00	37.8
East:	South	Kiama D	Drive (E)											
4	L2	212	13	223	6.1	0.129	3.4	LOS A	0.0	0.0	0.00	0.45	0.00	37.8
6a	R1	41	0	43	0.0	0.023	3.5	LOS A	0.1	0.8	0.39	0.46	0.39	37.1
Appro	oach	253	13	266	5.1	0.129	3.5	NA	0.1	0.8	0.06	0.45	0.06	37.7
North	West:	Saddleb	ack Mour	ntain Roa	d									
27a	L1	68	0	72	0.0	0.044	3.8	LOS A	0.2	1.4	0.37	0.49	0.37	36.9
29a	R1	42	0	44	0.0	0.078	7.5	LOS A	0.3	2.0	0.57	0.71	0.57	36.9
Appro	oach	110	0	116	0.0	0.078	5.2	LOS A	0.3	2.0	0.44	0.58	0.44	36.9
All Vehic	les	698	22	735	3.2	0.195	3.7	NA	0.3	2.0	0.09	0.48	0.09	37.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / IPC | Processed: Thursday, 6 October 2022 5:10:31 PM Project: St/Projects/SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation/SCT_0337_Kiama West_SIDRA_sc.sip9

MOVEMENT SUMMARY V Site: 4PM [SOU_MAN_22_PM_X (Site Folder: Base Year PM)]

3:00PM - 4:00PM Site Category: BASE YEAR Roundabout

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INF VOLL		DEM/ FLO		Deg. Satn		Level of Service	95% BA QUE		Prop. E Que	ffective Stop	Aver.	Aver. Speed
U		[Total	HV]	[Total	HV]	Salli	Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Tato	Cycles	km/h
Sout	h: Hen	ley Aveni	le											
1	L2	21	0.0	22	0.0	0.054	4.7	LOS A	0.3	1.9	0.52	0.55	0.52	34.7
2	T1	20	0.0	21	0.0	0.054	4.3	LOS A	0.3	1.9	0.52	0.55	0.52	38.0
3	R2	4	0.0	4	0.0	0.054	7.8	LOS A	0.3	1.9	0.52	0.55	0.52	36.0
3u	U	1	0.0	1	0.0	0.054	9.1	LOS A	0.3	1.9	0.52	0.55	0.52	38.1
Appr	oach	46	0.0	48	0.0	0.054	4.9	LOS A	0.3	1.9	0.52	0.55	0.52	36.8
East	: Bonai	ra Street												
4	L2	10	0.0	11	0.0	0.190	4.3	LOS A	1.0	7.4	0.50	0.64	0.50	33.1
5	T1	21	0.0	22	0.0	0.190	3.9	LOS A	1.0	7.4	0.50	0.64	0.50	30.9
6	R2	142	2.1	149	2.1	0.190	7.4	LOS A	1.0	7.4	0.50	0.64	0.50	36.5
6u	U	2	0.0	2	0.0	0.190	8.6	LOS A	1.0	7.4	0.50	0.64	0.50	15.8
Appr	oach	175	1.7	184	1.7	0.190	6.8	LOS A	1.0	7.4	0.50	0.64	0.50	35.9
North	h: Man	ning Stre	et											
7	L2	98	0.0	103	0.0	0.294	2.9	LOS A	1.9	14.0	0.28	0.51	0.28	36.5
8	T1	33	0.0	35	0.0	0.294	2.5	LOS A	1.9	14.0	0.28	0.51	0.28	37.8
9	R2	208	5.8	219	5.8	0.294	6.0	LOS A	1.9	14.0	0.28	0.51	0.28	37.2
9u	U	22	0.0	23	0.0	0.294	7.2	LOS A	1.9	14.0	0.28	0.51	0.28	38.9
Appr	oach	361	3.3	380	3.3	0.294	4.9	LOS A	1.9	14.0	0.28	0.51	0.28	37.3
West	t: Soutl	n Kiama I	Drive											
10	L2	295	2.7	311	2.7	0.349	3.9	LOS A	2.3	16.3	0.48	0.53	0.48	37.1
11	T1	42	2.4	44	2.4	0.349	3.5	LOS A	2.3	16.3	0.48	0.53	0.48	34.0
12	R2	19	0.0	20	0.0	0.349	6.8	LOS A	2.3	16.3	0.48	0.53	0.48	36.8
12u	U	3	0.0	3	0.0	0.349	8.2	LOS A	2.3	16.3	0.48	0.53	0.48	36.6
	oach	359	2.5	378	2.5	0.349	4.0	LOS A	2.3	16.3	0.48	0.53	0.48	36.9
All Vehio	cles	941	2.6	991	2.6	0.349	4.9	LOS A	2.3	16.3	0.41	0.54	0.41	36.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:32 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

W Site: 5PM [BLA_OLD_22_PM_X (Site Folder: Base Year PM)]

3:00PM - 4:00PM Site Category: BASE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INF VOLL		DEM/ FLO		Deg. Satn		Level of Service	95% BA QUE		Prop. E Que	ffective: Stop	Aver.	Aver.
טו		[Total	HV]	FLO [Total	vvS HV]	Sain	Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		rtato	0,000	km/h
Sout	h: Old	Saddleba	ack Road	I (S)										
1	L2	2	0.0	2	0.0	0.041	4.2	LOS A	0.2	1.4	0.19	0.59	0.19	34.4
2	T1	1	0.0	1	0.0	0.041	3.8	LOS A	0.2	1.4	0.19	0.59	0.19	34.9
3	R2	42	2.4	44	2.4	0.041	7.0	LOS A	0.2	1.4	0.19	0.59	0.19	29.2
3u	U	1	0.0	1	0.0	0.041	8.4	LOS A	0.2	1.4	0.19	0.59	0.19	29.1
Appr	oach	46	2.2	48	2.2	0.041	6.9	LOS A	0.2	1.4	0.19	0.59	0.19	29.6
East	Blanc	I Street (E	Ξ)											
4	L2	49	0.0	52	0.0	0.076	3.9	LOS A	0.4	2.6	0.06	0.47	0.06	35.2
5	T1	48	6.3	51	6.3	0.076	3.6	LOS A	0.4	2.6	0.06	0.47	0.06	40.2
6	R2	6	0.0	6	0.0	0.076	6.7	LOS A	0.4	2.6	0.06	0.47	0.06	39.2
6u	U	1	0.0	1	0.0	0.076	8.1	LOS A	0.4	2.6	0.06	0.47	0.06	32.4
Appr	oach	104	2.9	109	2.9	0.076	3.9	LOS A	0.4	2.6	0.06	0.47	0.06	38.0
North	n: Old	Saddleba	ck Road	(N)										
7	L2	5	0.0	5	0.0	0.007	4.3	LOS A	0.0	0.2	0.22	0.51	0.22	35.6
8	T1	1	0.0	1	0.0	0.007	3.9	LOS A	0.0	0.2	0.22	0.51	0.22	37.2
9	R2	1	0.0	1	0.0	0.007	7.1	LOS A	0.0	0.2	0.22	0.51	0.22	39.3
9u	U	1	0.0	1	0.0	0.007	8.5	LOS A	0.0	0.2	0.22	0.51	0.22	39.8
Appr	oach	8	0.0	8	0.0	0.007	5.1	LOS A	0.0	0.2	0.22	0.51	0.22	36.9
West	: Blan	d Street (W)											
10	L2	2	0.0	2	0.0	0.036	4.1	LOS A	0.2	1.3	0.18	0.45	0.18	39.4
11	T1	33	9.1	35	9.1	0.036	3.9	LOS A	0.2	1.3	0.18	0.45	0.18	39.0
12	R2	3	0.0	3	0.0	0.036	7.0	LOS A	0.2	1.3	0.18	0.45	0.18	36.1
12u	U	1	0.0	1	0.0	0.036	8.4	LOS A	0.2	1.3	0.18	0.45	0.18	42.1
Appr	oach	39	7.7	41	7.7	0.036	4.2	LOS A	0.2	1.3	0.18	0.45	0.18	38.9
All Vehio	cles	197	3.6	207	3.6	0.076	4.7	LOS A	0.4	2.6	0.12	0.50	0.12	36.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:27 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

W Site: 6PM [BLA_EUG_22_PM_X (Site Folder: Base Year PM)]

3:00PM - 4:00PM Site Category: BASE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total	IMES HV]	لDEM FLO Total]	WS HV]	Deg. Satn		Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
Caut		veh/h	%	veh/h	%	v/c	sec	-	veh	m	-		-	km/h
	0	ene Stree												
1	L2	1	0.0	1	0.0	0.018	6.5	LOS A	0.1	0.7	0.62	0.59	0.62	27.7
2	T1	8	0.0	8	0.0	0.018	6.4	LOS A	0.1	0.7	0.62	0.59	0.62	35.9
3	R2	3	0.0	3	0.0	0.018	9.4	LOS A	0.1	0.7	0.62	0.59	0.62	33.8
3u	U	1	0.0	1	0.0	0.018	10.9	LOS A	0.1	0.7	0.62	0.59	0.62	22.7
Appr	oach	13	0.0	14	0.0	0.018	7.4	LOS A	0.1	0.7	0.62	0.59	0.62	34.2
East:	Bland	Street (E	=)											
4	L2	13	0.0	14	0.0	0.273	3.9	LOS A	1.8	12.9	0.06	0.58	0.06	34.0
5	T1	104	2.9	109	2.9	0.273	3.5	LOS A	1.8	12.9	0.06	0.58	0.06	37.8
6	R2	297	2.7	313	2.7	0.273	6.7	LOS A	1.8	12.9	0.06	0.58	0.06	40.6
6u	U	1	0.0	1	0.0	0.273	8.1	LOS A	1.8	12.9	0.06	0.58	0.06	40.8
Appr	oach	415	2.7	437	2.7	0.273	5.9	LOS A	1.8	12.9	0.06	0.58	0.06	39.9
West	: Bland	d Street (\	W)											
10	L2	41	0.0	43	0.0	0.095	5.7	LOS A	0.5	3.4	0.47	0.59	0.47	37.6
11	T1	38	10.5	40	10.5	0.095	5.6	LOS A	0.5	3.4	0.47	0.59	0.47	37.4
12	R2	1	0.0	1	0.0	0.095	8.6	LOS A	0.5	3.4	0.47	0.59	0.47	27.7
12u	U	3	0.0	3	0.0	0.095	10.0	LOS A	0.5	3.4	0.47	0.59	0.47	20.9
Appr	oach	83	4.8	87	4.8	0.095	5.9	LOS A	0.5	3.4	0.47	0.59	0.47	36.7
All Vehic	les	511	2.9	538	2.9	0.273	5.9	LOS A	1.8	12.9	0.14	0.59	0.14	39.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:28 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

MOVEMENT SUMMARY V Site: 7PM [SHO_BLA_22_PM_X (Site Folder: Base Year PM)]

3:00PM - 4:00PM Site Category: BASE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	n: Sho	alhaven S	Street (S)										
1	L2	71	8.5	75	8.5	0.071	3.4	LOS A	0.0	0.1	0.00	0.29	0.00	37.7
2	T1	44	20.5	46	20.5	0.071	0.0	LOS A	0.0	0.1	0.00	0.29	0.00	33.0
3	R2	1	0.0	1	0.0	0.071	6.3	LOS A	0.0	0.1	0.00	0.29	0.00	14.8
Appr	oach	116	12.9	122	12.9	0.071	2.2	NA	0.0	0.1	0.00	0.29	0.00	36.6
East:	Acces	ss Road												
4	L2	3	0.0	3	0.0	0.018	0.1	LOS A	0.0	0.3	0.17	0.11	0.17	12.9
5	T1	5	0.0	5	0.0	0.018	1.1	LOS A	0.0	0.3	0.17	0.11	0.17	23.9
6	R2	14	0.0	15	0.0	0.018	0.7	LOS A	0.0	0.3	0.17	0.11	0.17	13.3
Appr	oach	22	0.0	23	0.0	0.018	0.7	LOS A	0.0	0.3	0.17	0.11	0.17	16.6
North	n: Shoa	alhaven S	Street (N))										
7	L2	17	0.0	18	0.0	0.207	7.5	LOS A	1.2	9.1	0.27	0.40	0.27	14.4
8	T1	50	26.0	53	26.0	0.207	0.4	LOS A	1.2	9.1	0.27	0.40	0.27	28.7
9	R2	341	1.5	359	1.5	0.207	3.7	LOS A	1.2	9.1	0.27	0.40	0.27	36.0
Appr	oach	408	4.4	429	4.4	0.207	3.5	NA	1.2	9.1	0.27	0.40	0.27	34.7
West	: Blan	d Street												
10	L2	44	6.8	46	6.8	0.033	3.6	LOS A	0.1	1.0	0.10	0.47	0.10	35.9
11	T1	3	0.0	3	0.0	0.033	7.7	LOS A	0.1	1.0	0.10	0.47	0.10	24.5
12	R2	4	50.0	4	50.0	0.033	6.2	LOS A	0.1	1.0	0.10	0.47	0.10	34.1
Appr	oach	51	9.8	54	9.8	0.033	4.0	LOS A	0.1	1.0	0.10	0.47	0.10	34.8
All Vehic	les	597	6.4	628	6.4	0.207	3.2	NA	1.2	9.1	0.20	0.38	0.20	34.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:29 PM Project: S:\Projects\SCT 00337 Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT 0337 Kiama West SIDRA sc.sip9

V Site: 8PM [JAM_BAN_22_PM_X (Site Folder: Base Year PM)]

3:00PM - 4:00PM Site Category: BASE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ban	ksia Drive	;											
1	L2	4	0.0	4	0.0	0.044	3.0	LOS A	0.2	1.4	0.29	0.59	0.29	23.2
3	R2	43	2.3	45	2.3	0.044	6.7	LOS A	0.2	1.4	0.29	0.59	0.29	39.3
3u	U	1	0.0	1	0.0	0.044	8.3	LOS A	0.2	1.4	0.29	0.59	0.29	25.4
Appro	oach	48	2.1	51	2.1	0.044	6.4	LOS A	0.2	1.4	0.29	0.59	0.29	37.9
East:	Jamb	eroo Roa	d (E)											
4	L2	70	1.4	74	1.4	0.133	4.2	LOS A	0.7	5.0	0.05	0.48	0.05	41.6
5	T1	125	2.4	132	2.4	0.133	4.4	LOS A	0.7	5.0	0.05	0.48	0.05	38.3
6u	U	6	0.0	6	0.0	0.133	10.1	LOS A	0.7	5.0	0.05	0.48	0.05	50.6
Appro	oach	201	2.0	212	2.0	0.133	4.5	LOS A	0.7	5.0	0.05	0.48	0.05	39.8
West	: Jamb	peroo Roa	ad (W)											
11	T1	98	7.1	103	7.1	0.086	3.6	LOS A	0.4	3.2	0.19	0.44	0.19	45.4
12	R2	4	0.0	4	0.0	0.086	7.3	LOS A	0.4	3.2	0.19	0.44	0.19	32.2
12u	U	1	0.0	1	0.0	0.086	9.1	LOS A	0.4	3.2	0.19	0.44	0.19	25.6
Appro	bach	103	6.8	108	6.8	0.086	3.8	LOS A	0.4	3.2	0.19	0.44	0.19	44.9
All Vehic	les	352	3.4	371	3.4	0.133	4.6	LOS A	0.7	5.0	0.12	0.48	0.12	40.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:25 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 9PM [JAM_SPR_22_PM_X (Site Folder: Base Year PM)]

3:00PM - 4:00PM Site Category: BASE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INF VOLL [Total	PUT JMES HV 1	DEM/ FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		nate	Cycles	km/h
South	n: Huto	chinson S	street											
1	L2	1	0.0	1	0.0	0.004	4.9	LOS A	0.0	0.1	0.39	0.55	0.39	44.1
2	T1	1	0.0	1	0.0	0.004	6.9	LOS A	0.0	0.1	0.39	0.55	0.39	46.7
3	R2	1	0.0	1	0.0	0.004	9.6	LOS A	0.0	0.1	0.39	0.55	0.39	44.7
Appro	oach	3	0.0	3	0.0	0.004	7.2	LOS A	0.0	0.1	0.39	0.55	0.39	45.3
East:	Terral	ong Stree	et											
4	L2	1	0.0	1	0.0	0.094	5.5	LOS A	0.0	0.0	0.00	0.00	0.00	57.7
5	T1	168	2.4	177	2.4	0.094	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
6	R2	472	2.3	497	2.3	0.238	6.1	LOS A	1.5	10.7	0.31	0.54	0.31	48.4
Appro	oach	641	2.3	675	2.3	0.238	4.5	NA	1.5	10.7	0.23	0.40	0.23	50.4
North	n: Sprir	ng Creek	Drive											
7	L2	72	4.2	76	4.2	0.040	5.8	LOS A	0.2	1.4	0.20	0.53	0.20	48.2
8	T1	1	0.0	1	0.0	0.058	8.0	LOS A	0.2	1.3	0.59	0.81	0.59	45.3
9	R2	28	0.0	29	0.0	0.058	10.4	LOS A	0.2	1.3	0.59	0.81	0.59	44.2
Appro	oach	101	3.0	106	3.0	0.058	7.1	LOS A	0.2	1.4	0.31	0.61	0.31	47.1
West	: Jamb	peroo Roa	ad											
10	L2	48	2.1	51	2.1	0.085	5.6	LOS A	0.0	0.1	0.01	0.20	0.01	53.8
11	T1	98	7.1	103	7.1	0.085	0.0	LOS A	0.0	0.1	0.01	0.20	0.01	55.8
12	R2	1	0.0	1	0.0	0.085	5.9	LOS A	0.0	0.1	0.01	0.20	0.01	49.0
Appro	oach	147	5.4	155	5.4	0.085	1.9	NA	0.0	0.1	0.01	0.20	0.01	55.0
All Vehic	les	892	2.9	939	2.9	0.238	4.4	NA	1.5	10.7	0.20	0.39	0.20	50.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:26 PM Project: S:\Projects\SCT 00337 Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT 0337 Kiama West SIDRA sc.sip9

V Site: 1AMFY [OLD_LON_36_AM_FY (Site Folder: Future Year w South Kiama AM)]

8:15AM - 9:15AM Future year w South Kiama Dev Site Category: FUTURE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Old	Saddleba		I (S)										
1 2 Appro	L2 T1 oach	6 19 25	0.0 5.3 4.0	6 20 26	0.0 5.3 4.0	0.014 0.014 0.014	5.5 0.0 1.3	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.14 0.14 0.14	0.00 0.00 0.00	57.1 58.7 58.3
North	n: Old S	Saddleba	ck Road	(N)										
8 9 Appro	T1 R2 oach	23 4 27	0.0 0.0 0.0	24 4 28	0.0 0.0 0.0	0.014 0.014 0.014	0.0 5.5 0.8	LOS A LOS A NA	0.0 0.0 0.0	0.1 0.1 0.1	0.03 0.03 0.03	0.09 0.09 0.09	0.03 0.03 0.03	59.1 56.9 58.8
West	: Long	Brush Ro	bad											
10 12 Appro	L2 R2 oach	1 17 18	0.0 0.0 0.0	1 18 19	0.0 0.0 0.0	0.012 0.012 0.012	5.6 5.5 5.5	LOS A LOS A LOS A	0.0 0.0 0.0	0.2 0.2 0.2	0.07 0.07 0.07	0.58 0.58 0.58	0.07 0.07 0.07	53.5 52.9 53.0
All Vehic	cles	70	1.4	74	1.4	0.014	2.2	NA	0.0	0.2	0.03	0.23	0.03	57.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:38 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 2AMFY [OLD_SAD_36_AM_FY (Site Folder: Future Year w South Kiama AM)]

8:15AM - 9:15AM Future year w South Kiama Dev Site Category: FUTURE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO ^V [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Sad	dleback M	lountain	Road (S)										
2 3 Appro	T1 R2 oach	5 4 9	0.0 0.0 0.0	5 4 9	0.0 0.0 0.0	0.005 0.005 0.005	0.1 5.5 2.5	LOS A LOS A NA	0.0 0.0 0.0	0.1 0.1 0.1	0.10 0.10 0.10	0.25 0.25 0.25	0.10 0.10 0.10	57.3 55.3 56.4
		eback Mo 4	ountain F 0.0	Road (E) 4	0.0	0.017	5.6	LOSA	0.0	0.3	0.04	0.58	0.04	53.6
6	R2	22	4.5	23	4.5	0.017	5.5	LOS A	0.0	0.3	0.04	0.58	0.04	52.8
Appro North		26 Saddleba	3.8 ck Road	27	3.8	0.017	5.5	LOS A	0.0	0.3	0.04	0.58	0.04	52.9
7 8	L2 T1	35 5	0.0 0.0	37 5	0.0 0.0	0.023 0.023	5.5 0.0	LOS A LOS A	0.0 0.0	0.0 0.0	0.00 0.00	0.51 0.51	0.00 0.00	54.2 55.6
Appro	oach	40	0.0	42	0.0	0.023	4.9	NA	0.0	0.0	0.00	0.51	0.00	54.3
All Vehic	les	75	1.3	79	1.3	0.023	4.8	NA	0.0	0.3	0.02	0.50	0.02	54.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:39 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 3AMFY [SOU_SAD_36_AM_FY (Site Folder: Future Year w South Kiama AM)]

8:15AM - 9:15AM Future year w South Kiama Dev Site Category: FUTURE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
0 11		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	n: Sout	h Kiama	Drive (S))										
1a	L1	230	2	242	0.9	0.445	3.2	LOS A	0.0	0.0	0.00	0.46	0.00	38.3
3	R2	541	18	569	3.3	0.445	3.7	LOS A	0.0	0.0	0.00	0.46	0.00	37.5
Appro	bach	771	20	812	2.6	0.445	3.6	NA	0.0	0.0	0.00	0.46	0.00	37.8
East:	South	Kiama D	Drive (E)											
4	L2	223	12	235	5.4	0.135	3.4	LOS A	0.0	0.0	0.00	0.45	0.00	37.8
6a	R1	143	1	151	0.7	0.110	4.6	LOS A	0.5	3.8	0.56	0.63	0.56	36.7
Appro	bach	366	13	385	3.6	0.135	3.9	NA	0.5	3.8	0.22	0.52	0.22	37.4
North	West:	Saddleb	ack Mour	ntain Roa	d									
27a	L1	349	1	367	0.3	0.297	5.3	LOS A	1.5	10.5	0.58	0.73	0.61	36.3
29a	R1	62	0	65	0.0	0.260	18.7	LOS B	0.9	6.6	0.84	0.95	0.94	33.1
Appro	oach	411	1	433	0.2	0.297	7.3	LOS A	1.5	10.5	0.62	0.76	0.66	35.5
All Vehic	les	1548	34	1629	2.2	0.445	4.6	NA	1.5	10.5	0.22	0.56	0.23	37.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:40 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

W Site: 4AMFY [SOU_MAN_36_AM_FY (Site Folder: Future Year w South Kiama AM)]

8:15AM - 9:15AM Future year w South Kiama Dev Site Category: FUTURE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLL		DEM. FLO		Deg.		Level of		ACK OF EUE		Effective	Aver.	Aver.
טו		I Total	HV 1	FLO [Total	WS HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		T Cato	Cycles	km/h
South	n: Hen	ley Avenu	le											
1	L2	17	0.0	18	0.0	0.051	6.0	LOS A	0.3	1.9	0.63	0.61	0.63	33.7
2	T1	16	0.0	17	0.0	0.051	5.6	LOS A	0.3	1.9	0.63	0.61	0.63	37.4
3	R2	3	0.0	3	0.0	0.051	9.0	LOS A	0.3	1.9	0.63	0.61	0.63	34.9
3u	U	1	0.0	1	0.0	0.051	10.3	LOS A	0.3	1.9	0.63	0.61	0.63	37.2
Appro	oach	37	0.0	39	0.0	0.051	6.2	LOS A	0.3	1.9	0.63	0.61	0.63	36.1
East:	Bona	ira Street												
4	L2	16	0.0	17	0.0	0.302	5.2	LOS A	1.8	13.2	0.62	0.72	0.62	32.5
5	T1	41	4.9	43	4.9	0.302	4.9	LOS A	1.8	13.2	0.62	0.72	0.62	29.9
6	R2	193	2.6	203	2.6	0.302	8.3	LOS A	1.8	13.2	0.62	0.72	0.62	36.0
6u	U	1	0.0	1	0.0	0.302	9.5	LOS A	1.8	13.2	0.62	0.72	0.62	15.5
Appro	oach	251	2.8	264	2.8	0.302	7.6	LOS A	1.8	13.2	0.62	0.72	0.62	35.3
North	n: Man	ning Stre	et											
7	L2	114	4.4	120	4.4	0.399	3.1	LOS A	3.3	23.9	0.40	0.53	0.40	36.0
8	T1	28	3.6	29	3.6	0.399	2.7	LOS A	3.3	23.9	0.40	0.53	0.40	37.5
9	R2	302	3.6	318	3.6	0.399	6.1	LOS A	3.3	23.9	0.40	0.53	0.40	36.9
9u	U	30	3.3	32	3.3	0.399	7.4	LOS A	3.3	23.9	0.40	0.53	0.40	38.6
Appro	oach	474	3.8	499	3.8	0.399	5.3	LOS A	3.3	23.9	0.40	0.53	0.40	36.9
West	: Sout	h Kiama I	Drive											
10	L2	810	1.9	853	1.9	0.880	12.3	LOS A	19.2	137.0	1.00	1.02	1.37	32.7
11	T1	62	6.5	65	6.5	0.880	12.1	LOS A	19.2	137.0	1.00	1.02	1.37	24.2
12	R2	18	5.6	19	5.6	0.880	15.5	LOS B	19.2	137.0	1.00	1.02	1.37	29.9
12u	U	2	0.0	2	0.0	0.880	16.5	LOS B	19.2	137.0	1.00	1.02	1.37	26.1
Appro	oach	892	2.2	939	2.2	0.880	12.3	LOS A	19.2	137.0	1.00	1.02	1.37	32.4
All		1654	2.7	1741	2.7	0.880	9.5	LOS A	19.2	137.0	0.76	0.82	0.96	34.2
Vehic	les													

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:20:02 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

W Site: 5AMFY [BLA_OLD_36_AM_FY (Site Folder: Future Year w South Kiama AM)]

8:15AM - 9:15AM Future year w South Kiama Dev Site Category: FUTURE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn		PUT JMES	DEM		Deg.		Level of	95% BA		Prop. E		Aver.	Aver.
טו		[Total	HV]	FLO [Total	HV]	Satn	Delay	Service	QUE [Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	n: Old	Saddleba	ack Road	I (S)										
1	L2	2	0.0	2	0.0	0.070	4.1	LOS A	0.3	2.4	0.16	0.59	0.16	34.4
2	T1	1	0.0	1	0.0	0.070	3.7	LOS A	0.3	2.4	0.16	0.59	0.16	35.0
3	R2	77	5.2	81	5.2	0.070	7.0	LOS A	0.3	2.4	0.16	0.59	0.16	29.2
3u	U	1	0.0	1	0.0	0.070	8.4	LOS A	0.3	2.4	0.16	0.59	0.16	29.2
Appro	oach	81	4.9	85	4.9	0.070	6.9	LOS A	0.3	2.4	0.16	0.59	0.16	29.4
East:	Bland	Street (E	Ξ)											
4	L2	42	4.8	44	4.8	0.063	3.9	LOS A	0.3	2.2	0.07	0.47	0.07	34.7
5	T1	33	3.0	35	3.0	0.063	3.6	LOS A	0.3	2.2	0.07	0.47	0.07	40.1
6	R2	5	20.0	5	20.0	0.063	6.9	LOS A	0.3	2.2	0.07	0.47	0.07	36.3
6u	U	2	0.0	2	0.0	0.063	8.2	LOS A	0.3	2.2	0.07	0.47	0.07	32.2
Appro	oach	82	4.9	86	4.9	0.063	4.1	LOS A	0.3	2.2	0.07	0.47	0.07	37.2
North	n: Old S	Saddleba	ick Road	(N)										
7	L2	8	12.5	8	12.5	0.011	4.9	LOS A	0.1	0.4	0.33	0.52	0.33	34.6
8	T1	1	0.0	1	0.0	0.011	4.3	LOS A	0.1	0.4	0.33	0.52	0.33	36.8
9	R2	1	0.0	1	0.0	0.011	7.5	LOS A	0.1	0.4	0.33	0.52	0.33	38.9
9u	U	1	0.0	1	0.0	0.011	8.9	LOS A	0.1	0.4	0.33	0.52	0.33	39.5
Appro	oach	11	9.1	12	9.1	0.011	5.4	LOS A	0.1	0.4	0.33	0.52	0.33	35.7
West	: Bland	d Street (W)											
10	L2	1	0.0	1	0.0	0.071	4.4	LOS A	0.3	2.4	0.25	0.46	0.25	39.1
11	T1	69	1.4	73	1.4	0.071	4.0	LOS A	0.3	2.4	0.25	0.46	0.25	39.1
12	R2	6	0.0	6	0.0	0.071	7.2	LOS A	0.3	2.4	0.25	0.46	0.25	35.8
12u	U	1	0.0	1	0.0	0.071	8.6	LOS A	0.3	2.4	0.25	0.46	0.25	41.8
Appro	oach	77	1.3	81	1.3	0.071	4.3	LOS A	0.3	2.4	0.25	0.46	0.25	38.8
All Vehic	les	251	4.0	264	4.0	0.071	5.1	LOS A	0.3	2.4	0.17	0.51	0.17	35.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:16:42 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

W Site: 6AMFY [BLA_EUG_36_AM_FY (Site Folder: Future Year w South Kiama AM)]

8:15AM - 9:15AM Future year w South Kiama Dev Site Category: FUTURE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] m	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Eug	ene Stree		VCII/II	70	V/C	360		Ven			_	_	K11/11
1	L2	1	0.0	1	0.0	0.031	7.0	LOS A	0.2	1.3	0.65	0.65	0.65	26.1
2	T1	10	10.0	11	10.0	0.031	7.3	LOS A	0.2	1.3	0.65	0.65	0.65	34.1
3	R2	9	0.0	9	0.0	0.031	10.0	LOS A	0.2	1.3	0.65	0.65	0.65	32.2
3u	U	1	0.0	1	0.0	0.031	11.4	LOS A	0.2	1.3	0.65	0.65	0.65	21.3
Appro	bach	21	4.8	22	4.8	0.031	8.6	LOS A	0.2	1.3	0.65	0.65	0.65	32.6
East:	Bland	l Street (E	Ξ)											
4	L2	11	0.0	12	0.0	0.298	3.9	LOS A	2.1	14.8	0.05	0.60	0.05	33.7
5	T1	79	6.3	83	6.3	0.298	3.6	LOS A	2.1	14.8	0.05	0.60	0.05	37.2
6	R2	365	2.7	384	2.7	0.298	6.7	LOS A	2.1	14.8	0.05	0.60	0.05	40.3
6u	U	1	0.0	1	0.0	0.298	8.1	LOS A	2.1	14.8	0.05	0.60	0.05	40.5
Appro	oach	456	3.3	480	3.3	0.298	6.1	LOS A	2.1	14.8	0.05	0.60	0.05	39.7
West	: Blan	d Street (V)											
10	L2	83	6.0	87	6.0	0.198	6.7	LOS A	1.0	7.5	0.55	0.65	0.55	36.6
11	T1	76	2.6	80	2.6	0.198	6.2	LOS A	1.0	7.5	0.55	0.65	0.55	36.7
12	R2	1	0.0	1	0.0	0.198	9.4	LOS A	1.0	7.5	0.55	0.65	0.55	26.8
12u	U	2	0.0	2	0.0	0.198	10.8	LOS A	1.0	7.5	0.55	0.65	0.55	25.3
Appro	oach	162	4.3	171	4.3	0.198	6.5	LOS A	1.0	7.5	0.55	0.65	0.55	36.5
All Vehic	les	639	3.6	673	3.6	0.298	6.3	LOS A	2.1	14.8	0.20	0.62	0.20	38.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:17:42 PM

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:17:42 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 7AMFY [SHO_BLA_36_AM_FY (Site Folder: Future Year w South Kiama AM)]

8:15AM - 9:15AM Future year w South Kiama Dev Site Category: FUTURE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn		PUT JMES	DEM FLO		Deg.		Level of		ACK OF EUE	Prop. Que	Effective	Aver.	Aver.
U		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: Sho	alhaven	Street (S)										
1	L2	29	17.2	31	17.2	0.044	3.5	LOS A	0.0	0.1	0.01	0.20	0.01	38.4
2	T1	40	20.0	42	20.0	0.044	0.0	LOS A	0.0	0.1	0.01	0.20	0.01	34.8
3	R2	1	0.0	1	0.0	0.044	6.6	LOS A	0.0	0.1	0.01	0.20	0.01	15.0
Appr	oach	70	18.6	74	18.6	0.044	1.5	NA	0.0	0.1	0.01	0.20	0.01	36.7
East:	Acces	ss Road												
4	L2	1	0.0	1	0.0	0.020	0.3	LOS A	0.0	0.3	0.32	0.25	0.32	12.8
5	T1	7	0.0	7	0.0	0.020	1.4	LOS A	0.0	0.3	0.32	0.25	0.32	23.7
6	R2	13	0.0	14	0.0	0.020	1.1	LOS A	0.0	0.3	0.32	0.25	0.32	13.1
Appr	oach	21	0.0	22	0.0	0.020	1.2	LOS A	0.0	0.3	0.32	0.25	0.32	17.8
North	n: Shoa	alhaven S	Street (N)											
7	L2	32	0.0	34	0.0	0.289	7.4	LOS A	1.9	13.5	0.22	0.36	0.22	14.6
8	T1	126	10.3	133	10.3	0.289	0.2	LOS A	1.9	13.5	0.22	0.36	0.22	29.7
9	R2	417	2.4	439	2.4	0.289	3.6	LOS A	1.9	13.5	0.22	0.36	0.22	36.6
Appr	oach	575	4.0	605	4.0	0.289	3.1	NA	1.9	13.5	0.22	0.36	0.22	34.6
West	: Bland	d Street												
10	L2	89	4.5	94	4.5	0.068	3.5	LOS A	0.3	2.0	0.09	0.47	0.09	36.0
11	T1	4	0.0	4	0.0	0.068	8.2	LOS A	0.3	2.0	0.09	0.47	0.09	24.6
12	R2	13	0.0	14	0.0	0.068	5.6	LOS A	0.3	2.0	0.09	0.47	0.09	34.6
Appr	oach	106	3.8	112	3.8	0.068	4.0	LOS A	0.3	2.0	0.09	0.47	0.09	35.2
All Vehic	cles	772	5.2	813	5.2	0.289	3.0	NA	1.9	13.5	0.19	0.35	0.19	34.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:17:41 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

W Site: 8AMFY [JAM_BAN_36_AM_FY (Site Folder: Future Year w South Kiama AM)]

8:15AM - 9:15AM Future year w South Kiama Dev Site Category: FUTURE YEAR Roundabout

Vehi	cle M	ovement	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO ^V [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Banl	ksia Drive												
1	L2	3	0.0	3	0.0	0.084	2.9	LOS A	0.4	2.8	0.26	0.60	0.26	23.2
3	R2	91	1.1	96	1.1	0.084	6.5	LOS A	0.4	2.8	0.26	0.60	0.26	39.4
3u	U	1	0.0	1	0.0	0.084	8.2	LOS A	0.4	2.8	0.26	0.60	0.26	25.4
Appro	oach	95	1.1	100	1.1	0.084	6.4	LOS A	0.4	2.8	0.26	0.60	0.26	38.8
East:	Jamb	eroo Roa	d (E)											
4	L2	65	1.5	68	1.5	0.108	4.2	LOS A	0.6	4.0	0.04	0.48	0.04	41.7
5	T1	95	1.1	100	1.1	0.108	4.4	LOS A	0.6	4.0	0.04	0.48	0.04	38.4
6u	U	5	0.0	5	0.0	0.108	10.1	LOS A	0.6	4.0	0.04	0.48	0.04	50.7
Appro	oach	165	1.2	174	1.2	0.108	4.5	LOS A	0.6	4.0	0.04	0.48	0.04	40.0
West	: Jamb	eroo Roa	id (W)											
11	T1	145	1.4	153	1.4	0.128	3.9	LOS A	0.7	4.8	0.27	0.45	0.27	46.0
12	R2	2	0.0	2	0.0	0.128	7.6	LOS A	0.7	4.8	0.27	0.45	0.27	31.5
12u	U	1	0.0	1	0.0	0.128	9.4	LOS A	0.7	4.8	0.27	0.45	0.27	25.2
Appro	oach	148	1.4	156	1.4	0.128	4.0	LOS A	0.7	4.8	0.27	0.45	0.27	45.8
All Vehic	les	408	1.2	429	1.2	0.128	4.8	LOS A	0.7	4.8	0.17	0.50	0.17	41.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:16:45 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 9AMFY [JAM_SPR_36_AM_FY (Site Folder: Future Year w South Kiama AM)]

8:15AM - 9:15AM Future year w South Kiama Dev Site Category: FUTURE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Huto	chinson S	street											
1	L2	1	0.0	1	0.0	0.004	4.8	LOS A	0.0	0.1	0.35	0.54	0.35	44.3
2	T1	1	0.0	1	0.0	0.004	6.5	LOS A	0.0	0.1	0.35	0.54	0.35	46.8
3	R2	1	0.0	1	0.0	0.004	9.4	LOS A	0.0	0.1	0.35	0.54	0.35	44.9
Appro	oach	3	0.0	3	0.0	0.004	6.9	LOS A	0.0	0.1	0.35	0.54	0.35	45.4
East:	Terral	ong Stree	et											
4	L2	1	0.0	1	0.0	0.073	5.5	LOS A	0.0	0.0	0.00	0.00	0.00	57.7
5	T1	132	0.8	139	0.8	0.073	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
6	R2	361	1.7	380	1.7	0.202	6.4	LOS A	1.2	8.4	0.41	0.58	0.41	48.0
Appro	oach	494	1.4	520	1.4	0.202	4.7	NA	1.2	8.4	0.30	0.43	0.30	50.1
North	n: Sprii	ng Creek	Drive											
7	L2	122	0.8	128	0.8	0.072	6.1	LOS A	0.3	2.4	0.30	0.56	0.30	48.3
8	T1	1	0.0	1	0.0	0.059	7.6	LOS A	0.2	1.4	0.57	0.79	0.57	45.6
9	R2	30	3.3	32	3.3	0.059	10.1	LOS A	0.2	1.4	0.57	0.79	0.57	44.2
Appro	oach	153	1.3	161	1.3	0.072	6.9	LOS A	0.3	2.4	0.36	0.60	0.36	47.5
West	: Jamb	peroo Roa	ad											
10	L2	58	1.7	61	1.7	0.144	5.6	LOS A	0.0	0.1	0.00	0.13	0.00	54.8
11	T1	202	1.0	213	1.0	0.144	0.0	LOS A	0.0	0.1	0.00	0.13	0.00	57.2
12	R2	1	0.0	1	0.0	0.144	5.8	LOS A	0.0	0.1	0.00	0.13	0.00	49.7
Appro	oach	261	1.1	275	1.1	0.144	1.3	NA	0.0	0.1	0.00	0.13	0.00	56.5
All Vehic	les	911	1.3	959	1.3	0.202	4.1	NA	1.2	8.4	0.23	0.37	0.23	51.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:16:44 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 1PMFY [OLD_LON_36_PM_FY (Site Folder: Future Year w South Kiama PM)]

3:00PM - 4:00PM Future year with South Kiama Site Category: FUTURE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Old	Saddleba	ck Road	l (S)										
1 2 Appro	L2 T1 bach	13 27 40	0.0 0.0 0.0	14 28 42	0.0 0.0 0.0	0.022 0.022 0.022	5.5 0.0 1.8	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.19 0.19 0.19	0.00 0.00 0.00	56.7 58.3 57.8
North	: Old S	Saddleba	ck Road	(N)										
8	T1	11	0.0	12	0.0	0.010	0.1	LOSA	0.0	0.3	0.10	0.26	0.10	57.3
9 Appro	R2 bach	9 20	0.0	9 21	0.0 0.0	0.010	5.5 2.5	LOS A NA	0.0 0.0	0.3 0.3	0.10 0.10	0.26 0.26	0.10 0.10	55.2 56.4
West	: Long	Brush Ro	bad											
10 12	L2 R2	9 13	0.0 7.7	9 14	0.0 7.7	0.014 0.014	5.6 5.6	LOS A LOS A	0.0 0.0	0.3 0.3	0.07 0.07	0.57 0.57	0.07 0.07	53.4 52.6
Appro	oach	22	4.5	23	4.5	0.014	5.6	LOS A	0.0	0.3	0.07	0.57	0.07	52.9
All Vehic	les	82	1.2	86	1.2	0.022	3.0	NA	0.0	0.3	0.04	0.31	0.04	56.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:47 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 2PMFY [OLD_SAD_36_PM_FY (Site Folder: Future Year w South Kiama PM)]

3:00PM - 4:00PM Future year with South Kiama Site Category: FUTURE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Sad	dleback N	lountain	Road (S)										
2	T1	13	0.0	14	0.0	0.012	0.0	LOS A	0.0	0.3	0.07	0.27	0.07	57.4
3	R2	11	0.0	12	0.0	0.012	5.5	LOS A	0.0	0.3	0.07	0.27	0.07	55.3
Appro	oach	24	0.0	25	0.0	0.012	2.5	NA	0.0	0.3	0.07	0.27	0.07	56.4
East:	Saddl	eback Mo	ountain I	Road (E)										
4	L2	13	0.0	14	0.0	0.025	5.6	LOS A	0.1	0.5	0.03	0.58	0.03	53.6
6	R2	27	0.0	28	0.0	0.025	5.5	LOS A	0.1	0.5	0.03	0.58	0.03	53.0
Appro	oach	40	0.0	42	0.0	0.025	5.5	LOS A	0.1	0.5	0.03	0.58	0.03	53.2
North	: Old S	Saddleba	ck Road											
7	L2	19	0.0	20	0.0	0.013	5.5	LOS A	0.0	0.0	0.00	0.46	0.00	54.5
8	T1	5	0.0	5	0.0	0.013	0.0	LOS A	0.0	0.0	0.00	0.46	0.00	56.0
Appro	oach	24	0.0	25	0.0	0.013	4.4	NA	0.0	0.0	0.00	0.46	0.00	54.8
All Vehic	les	88	0.0	93	0.0	0.025	4.4	NA	0.1	0.5	0.03	0.46	0.03	54.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:48 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 3PMFY [SOU_SAD_36_PM_FY (Site Folder: Future Year w South Kiama PM)]

3:00PM - 4:00PM Future year with South Kiama Site Category: FUTURE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	VOLU [Total	HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec	_	veh	m	-	-	-	km/h
South	n: Sout	th Kiama	Drive (S))										
1a	L1	162	0	171	0.0	0.336	3.2	LOS A	0.0	0.0	0.00	0.46	0.00	38.4
3	R2	423	11	445	2.6	0.336	3.6	LOS A	0.0	0.0	0.00	0.46	0.00	37.6
Appro	oach	585	11	616	1.9	0.336	3.5	NA	0.0	0.0	0.00	0.46	0.00	37.9
East:	South	Kiama D	Drive (E)											
4	L2	258	16	272	6.2	0.157	3.4	LOS A	0.0	0.0	0.00	0.45	0.00	37.8
6a	R1	183	0	193	0.0	0.121	4.1	LOS A	0.6	4.4	0.50	0.57	0.50	36.8
Appro	oach	441	16	464	3.6	0.157	3.7	NA	0.6	4.4	0.21	0.50	0.21	37.4
North	West:	Saddleb	ack Mour	ntain Roa	d									
27a	L1	155	0	163	0.0	0.114	4.3	LOS A	0.5	3.6	0.47	0.58	0.47	36.6
29a	R1	51	0	54	0.0	0.175	14.2	LOS A	0.6	4.2	0.78	0.88	0.78	34.5
Appro	oach	206	0	217	0.0	0.175	6.8	LOS A	0.6	4.2	0.54	0.66	0.54	35.8
All Vehic	les	1232	27	1297	2.2	0.336	4.1	NA	0.6	4.4	0.17	0.51	0.17	37.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:49 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

W Site: 4PMFY [SOU_MAN_36_PM_FY (Site Folder: Future Year w South Kiama PM)]

3:00PM - 4:00PM Future year with South Kiama Site Category: FUTURE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU	IMES	DEM/ FLO	WS	Deg. Satn		Level of Service	95% BA QUE	EUE	Prop. E Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Hen	ley Avenu												
1	L2	21	0.0	22	0.0	0.066	6.5	LOS A	0.4	2.5	0.66	0.65	0.66	33.3
2	T1	20	0.0	21	0.0	0.066	6.1	LOS A	0.4	2.5	0.66	0.65	0.66	37.2
3	R2	4	0.0	4	0.0	0.066	9.5	LOS A	0.4	2.5	0.66	0.65	0.66	34.4
3u	U	1	0.0	1	0.0	0.066	10.8	LOS A	0.4	2.5	0.66	0.65	0.66	36.9
Appro	oach	46	0.0	48	0.0	0.066	6.7	LOS A	0.4	2.5	0.66	0.65	0.66	35.7
East:	Bonai	ra Street												
4	L2	12	0.0	13	0.0	0.278	5.9	LOS A	1.7	12.0	0.67	0.76	0.67	31.8
5	T1	26	0.0	27	0.0	0.278	5.5	LOS A	1.7	12.0	0.67	0.76	0.67	29.0
6	R2	173	2.3	182	2.3	0.278	9.0	LOS A	1.7	12.0	0.67	0.76	0.67	35.6
6u	U	2	0.0	2	0.0	0.278	10.2	LOS A	1.7	12.0	0.67	0.76	0.67	15.2
Appro	oach	213	1.9	224	1.9	0.278	8.4	LOS A	1.7	12.0	0.67	0.76	0.67	34.9
North	: Man	ning Stree	et											
7	L2	119	0.0	125	0.0	0.465	3.1	LOS A	3.9	28.1	0.39	0.53	0.39	36.1
8	T1	40	0.0	42	0.0	0.465	2.7	LOS A	3.9	28.1	0.39	0.53	0.39	37.5
9	R2	386	3.9	406	3.9	0.465	6.2	LOS A	3.9	28.1	0.39	0.53	0.39	36.9
9u	U	27	0.0	28	0.0	0.465	7.4	LOS A	3.9	28.1	0.39	0.53	0.39	38.6
Appro	oach	572	2.6	602	2.6	0.465	5.3	LOS A	3.9	28.1	0.39	0.53	0.39	36.9
West	: Soutl	n Kiama [Drive											
10	L2	504	2.0	531	2.0	0.577	4.6	LOS A	4.9	34.9	0.67	0.63	0.67	36.6
11	T1	51	2.0	54	2.0	0.577	4.2	LOS A	4.9	34.9	0.67	0.63	0.67	32.9
12	R2	23	0.0	24	0.0	0.577	7.6	LOS A	4.9	34.9	0.67	0.63	0.67	36.1
12u	U	4	0.0	4	0.0	0.577	8.9	LOS A	4.9	34.9	0.67	0.63	0.67	35.4
Appro	oach	582	1.9	613	1.9	0.577	4.7	LOS A	4.9	34.9	0.67	0.63	0.67	36.5
All Vehic	les	1413	2.1	1487	2.1	0.577	5.6	LOS A	4.9	34.9	0.56	0.61	0.56	36.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:20:12 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

₩ Site: 5PMFY [BLA_OLD_36_PM_FY (Site Folder: Future Year w South Kiama PM)]

3:00PM - 4:00PM Future year with South Kiama Site Category: FUTURE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn		PUT JMES	DEM. FLO		Deg. Satn		Level of Service	95% BA QUE		Prop. E Que	ffective Stop	Aver.	Aver. Speed
שו		[Total	HV]	[Total	HV]	Salli	Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		TALC	C y cico	km/h
Sout	h: Old	Saddleba	ack Road	I (S)										
1	L2	2	0.0	2	0.0	0.050	4.3	LOS A	0.2	1.6	0.21	0.59	0.21	34.3
2	T1	1	0.0	1	0.0	0.050	3.9	LOS A	0.2	1.6	0.21	0.59	0.21	34.8
3	R2	51	2.0	54	2.0	0.050	7.1	LOS A	0.2	1.6	0.21	0.59	0.21	29.1
3u	U	1	0.0	1	0.0	0.050	8.5	LOS A	0.2	1.6	0.21	0.59	0.21	29.0
Appr	oach	55	1.8	58	1.8	0.050	7.0	LOS A	0.2	1.6	0.21	0.59	0.21	29.4
East:	Bland	I Street (I	Ξ)											
4	L2	60	0.0	63	0.0	0.092	3.9	LOS A	0.5	3.3	0.06	0.47	0.06	35.2
5	T1	59	6.8	62	6.8	0.092	3.6	LOS A	0.5	3.3	0.06	0.47	0.06	40.2
6	R2	7	0.0	7	0.0	0.092	6.7	LOS A	0.5	3.3	0.06	0.47	0.06	39.2
6u	U	1	0.0	1	0.0	0.092	8.2	LOS A	0.5	3.3	0.06	0.47	0.06	32.3
Appr	oach	127	3.1	134	3.1	0.092	3.9	LOS A	0.5	3.3	0.06	0.47	0.06	38.0
North	n: Old S	Saddleba	ick Road	(N)										
7	L2	5	0.0	5	0.0	0.007	4.4	LOS A	0.0	0.2	0.25	0.51	0.25	35.5
8	T1	1	0.0	1	0.0	0.007	4.0	LOS A	0.0	0.2	0.25	0.51	0.25	37.1
9	R2	1	0.0	1	0.0	0.007	7.2	LOS A	0.0	0.2	0.25	0.51	0.25	39.1
9u	U	1	0.0	1	0.0	0.007	8.6	LOS A	0.0	0.2	0.25	0.51	0.25	39.7
Appr	oach	8	0.0	8	0.0	0.007	5.2	LOS A	0.0	0.2	0.25	0.51	0.25	36.7
West	: Bland	d Street (W)											
10	L2	2	0.0	2	0.0	0.044	4.2	LOS A	0.2	1.6	0.21	0.45	0.21	39.3
11	T1	40	10.0	42	10.0	0.044	3.9	LOS A	0.2	1.6	0.21	0.45	0.21	38.8
12	R2	4	0.0	4	0.0	0.044	7.0	LOS A	0.2	1.6	0.21	0.45	0.21	35.9
12u	U	1	0.0	1	0.0	0.044	8.5	LOS A	0.2	1.6	0.21	0.45	0.21	42.0
Appr	oach	47	8.5	49	8.5	0.044	4.3	LOS A	0.2	1.6	0.21	0.45	0.21	38.6
All Vehic	cles	237	3.8	249	3.8	0.092	4.8	LOS A	0.5	3.3	0.13	0.50	0.13	35.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:20:07 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

₩ Site: 6PMFY [BLA_EUG_36_PM_FY (Site Folder: Future Year w South Kiama PM)]

3:00PM - 4:00PM Future year with South Kiama Site Category: FUTURE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU	MES	DEM, FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF	Prop. E Que	Stop		Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	n: Eug	ene Stree	et											
1	L2	1	0.0	1	0.0	0.020	7.4	LOS A	0.1	0.8	0.67	0.62	0.67	26.4
2	T1	8	0.0	8	0.0	0.020	7.3	LOS A	0.1	0.8	0.67	0.62	0.67	34.7
3	R2	3	0.0	3	0.0	0.020	10.4	LOS A	0.1	0.8	0.67	0.62	0.67	32.5
3u	U	1	0.0	1	0.0	0.020	11.8	LOS A	0.1	0.8	0.67	0.62	0.67	21.5
Appr	oach	13	0.0	14	0.0	0.020	8.4	LOS A	0.1	0.8	0.67	0.62	0.67	33.0
East:	Bland	Street (E)											
4	L2	16	0.0	17	0.0	0.333	3.9	LOS A	2.4	17.3	0.07	0.58	0.07	34.0
5	T1	127	3.1	134	3.1	0.333	3.5	LOS A	2.4	17.3	0.07	0.58	0.07	37.7
6	R2	361	2.8	380	2.8	0.333	6.8	LOS A	2.4	17.3	0.07	0.58	0.07	40.5
6u	U	1	0.0	1	0.0	0.333	8.1	LOS A	2.4	17.3	0.07	0.58	0.07	40.7
Appr	oach	505	2.8	532	2.8	0.333	5.9	LOS A	2.4	17.3	0.07	0.58	0.07	39.8
West	: Bland	d Street (\	N)											
10	L2	50	0.0	53	0.0	0.123	6.2	LOS A	0.6	4.5	0.52	0.63	0.52	37.0
11	T1	46	10.9	48	10.9	0.123	6.2	LOS A	0.6	4.5	0.52	0.63	0.52	36.7
12	R2	1	0.0	1	0.0	0.123	9.1	LOS A	0.6	4.5	0.52	0.63	0.52	27.0
12u	U	4	0.0	4	0.0	0.123	10.5	LOS A	0.6	4.5	0.52	0.63	0.52	20.6
Appr	oach	101	5.0	106	5.0	0.123	6.4	LOS A	0.6	4.5	0.52	0.63	0.52	36.1
All Vehic	les	619	3.1	652	3.1	0.333	6.0	LOS A	2.4	17.3	0.15	0.59	0.15	39.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:20:09 PM

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:20:09 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 7PMFY [SHO_BLA_36_PM_FY (Site Folder: Future Year w South Kiama PM)]

3:00PM - 4:00PM Future year with South Kiama Site Category: FUTURE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemer	t Perfo	rmance										
Mov ID	Turn		PUT JMES	DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver. No	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m	Que	Rate	Cycles	km/h
South	h: Sho	alhaven												
1	L2	86	8.1	91	8.1	0.086	3.4	LOS A	0.0	0.1	0.00	0.28	0.00	37.7
2	T1	54	20.4	57	20.4	0.086	0.0	LOS A	0.0	0.1	0.00	0.28	0.00	33.1
3	R2	1	0.0	1	0.0	0.086	6.3	LOS A	0.0	0.1	0.00	0.28	0.00	14.8
Appro	oach	141	12.8	148	12.8	0.086	2.1	NA	0.0	0.1	0.00	0.28	0.00	36.7
East:	Acces	ss Road												
4	L2	3	0.0	3	0.0	0.018	0.1	LOS A	0.0	0.3	0.18	0.11	0.18	12.9
5	T1	5	0.0	5	0.0	0.018	1.2	LOS A	0.0	0.3	0.18	0.11	0.18	23.8
6	R2	14	0.0	15	0.0	0.018	0.7	LOS A	0.0	0.3	0.18	0.11	0.18	13.3
Appro	oach	22	0.0	23	0.0	0.018	0.7	LOS A	0.0	0.3	0.18	0.11	0.18	16.6
North	n: Shoa	alhaven S	Street (N))										
7	L2	17	0.0	18	0.0	0.211	7.6	LOS A	1.3	9.2	0.31	0.41	0.31	14.4
8	T1	50	26.0	53	26.0	0.211	0.4	LOS A	1.3	9.2	0.31	0.41	0.31	28.5
9	R2	341	1.5	359	1.5	0.211	3.8	LOS A	1.3	9.2	0.31	0.41	0.31	35.9
Appro	oach	408	4.4	429	4.4	0.211	3.5	NA	1.3	9.2	0.31	0.41	0.31	34.6
West	: Blan	d Street												
10	L2	54	7.4	57	7.4	0.039	3.6	LOS A	0.2	1.3	0.12	0.47	0.12	35.8
11	T1	4	0.0	4	0.0	0.039	7.7	LOS A	0.2	1.3	0.12	0.47	0.12	24.5
12	R2	4	50.0	4	50.0	0.039	6.3	LOS A	0.2	1.3	0.12	0.47	0.12	34.0
Appro	oach	62	9.7	65	9.7	0.039	4.0	LOS A	0.2	1.3	0.12	0.47	0.12	34.6
All Vehic	cles	633	6.6	666	6.6	0.211	3.2	NA	1.3	9.2	0.22	0.38	0.22	34.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:20:10 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

₩ Site: 8PMFY [JAM_BAN_36_PM_FY (Site Folder: Future Year w South Kiama PM)]

3:00PM - 4:00PM Future year with South Kiama Site Category: FUTURE YEAR Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ban	ksia Drive	•											
1	L2	4	0.0	4	0.0	0.045	3.1	LOS A	0.2	1.5	0.32	0.60	0.32	23.1
3	R2	43	2.3	45	2.3	0.045	6.8	LOS A	0.2	1.5	0.32	0.60	0.32	39.1
3u	U	1	0.0	1	0.0	0.045	8.5	LOS A	0.2	1.5	0.32	0.60	0.32	25.2
Appro	oach	48	2.1	51	2.1	0.045	6.6	LOS A	0.2	1.5	0.32	0.60	0.32	37.7
East:	Jamb	eroo Roa	d (E)											
4	L2	85	1.2	89	1.2	0.162	4.2	LOS A	0.9	6.2	0.06	0.47	0.06	41.6
5	T1	152	2.6	160	2.6	0.162	4.5	LOS A	0.9	6.2	0.06	0.47	0.06	38.3
6u	U	7	0.0	7	0.0	0.162	10.1	LOS A	0.9	6.2	0.06	0.47	0.06	50.6
Appro	oach	244	2.0	257	2.0	0.162	4.5	LOS A	0.9	6.2	0.06	0.47	0.06	39.7
West	: Jamb	eroo Roa	ad (W)											
11	T1	120	7.5	126	7.5	0.104	3.6	LOS A	0.5	4.0	0.19	0.44	0.19	45.3
12	R2	5	0.0	5	0.0	0.104	7.3	LOS A	0.5	4.0	0.19	0.44	0.19	32.1
12u	U	1	0.0	1	0.0	0.104	9.1	LOS A	0.5	4.0	0.19	0.44	0.19	25.5
Appro	oach	126	7.1	133	7.1	0.104	3.8	LOS A	0.5	4.0	0.19	0.44	0.19	44.8
All Vehic	les	418	3.6	440	3.6	0.162	4.5	LOS A	0.9	6.2	0.13	0.48	0.13	40.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:20:04 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 9PMFY [JAM_SPR_36_PM_FY (Site Folder: Future Year w South Kiama PM)]

3:00PM - 4:00PM Future year with South Kiama Site Category: FUTURE YEAR Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Huto	chinson S	street											
1	L2	1	0.0	1	0.0	0.005	5.0	LOS A	0.0	0.1	0.46	0.59	0.46	43.2
2	T1	1	0.0	1	0.0	0.005	8.4	LOS A	0.0	0.1	0.46	0.59	0.46	45.8
3	R2	1	0.0	1	0.0	0.005	12.0	LOS A	0.0	0.1	0.46	0.59	0.46	43.8
Appro	oach	3	0.0	3	0.0	0.005	8.4	LOS A	0.0	0.1	0.46	0.59	0.46	44.3
East:	Terral	long Stree	et											
4	L2	1	0.0	1	0.0	0.114	5.6	LOS A	0.0	0.0	0.00	0.00	0.00	57.7
5	T1	204	2.5	215	2.5	0.114	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
6	R2	573	2.3	603	2.3	0.298	6.2	LOS A	1.9	13.9	0.37	0.56	0.37	48.2
Appro	oach	778	2.3	819	2.3	0.298	4.6	NA	1.9	13.9	0.27	0.41	0.27	50.2
North	n: Sprii	ng Creek	Drive											
7	L2	88	4.5	93	4.5	0.050	5.9	LOS A	0.2	1.7	0.23	0.54	0.23	48.0
8	T1	1	0.0	1	0.0	0.089	9.5	LOS A	0.3	1.9	0.69	0.86	0.69	43.9
9	R2	34	0.0	36	0.0	0.089	12.6	LOS A	0.3	1.9	0.69	0.86	0.69	42.1
Appro	oach	123	3.3	129	3.3	0.089	7.8	LOS A	0.3	1.9	0.36	0.63	0.36	46.3
West	: Jamb	peroo Roa	ad											
10	L2	58	1.7	61	1.7	0.104	5.6	LOS A	0.0	0.1	0.01	0.19	0.01	53.8
11	T1	120	7.5	126	7.5	0.104	0.0	LOS A	0.0	0.1	0.01	0.19	0.01	55.9
12	R2	1	0.0	1	0.0	0.104	6.0	LOS A	0.0	0.1	0.01	0.19	0.01	49.0
Appro	oach	179	5.6	188	5.6	0.104	1.8	NA	0.0	0.1	0.01	0.19	0.01	55.0
All Vehic	cles	1083	3.0	1140	3.0	0.298	4.5	NA	1.9	13.9	0.24	0.40	0.24	50.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:20:05 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 1AME [OLD_LON_36_AM_E (Site Folder: Everything AM)]

8:15AM - 9:15AM Complete combination of conditions Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Old	Saddleba	ck Road	I (S)										
1 2 Appro	L2 T1 bach	55 43 98	0.0 2.3 1.0	58 45 103	0.0 2.3 1.0	0.055 0.055 0.055	5.6 0.0 3.1	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.33 0.33 0.33	0.00 0.00 0.00	55.6 57.0 56.2
		Saddleba		()										
8 9	T1 R2	78 4	0.0 0.0	82 4	0.0 0.0	0.044 0.044	0.0 5.7	LOS A LOS A	0.0 0.0	0.2 0.2	0.02 0.02	0.03 0.03	0.02 0.02	59.6 57.4
Appro West		82 Brush Ro	0.0 pad	86	0.0	0.044	0.3	NA	0.0	0.2	0.02	0.03	0.02	59.5
10 12	L2 R2	1 73	0.0 0.0	1 77	0.0 0.0	0.054 0.054	5.6 5.7	LOS A LOS A	0.1 0.1	0.9 0.9	0.14 0.14	0.59 0.59	0.14 0.14	53.3 52.7
Appro	oach	74	0.0	78	0.0	0.054	5.7	LOS A	0.1	0.9	0.14	0.59	0.14	52.8
All Vehic	les	254	0.4	267	0.4	0.055	3.0	NA	0.1	0.9	0.05	0.31	0.05	56.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:57 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 2AME [OLD_SAD_36_AM_E (Site Folder: Everything AM)]

8:15AM - 9:15AM Complete combination of conditions Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Sad	dleback N	lountain	Road (S)										
2 3 Appro	T1 R2 oach	5 4 9	0.0 0.0 0.0	5 4 9	0.0 0.0 0.0	0.005 0.005 0.005	0.2 5.8 2.7	LOS A LOS A NA	0.0 0.0 0.0	0.1 0.1 0.1	0.21 0.21 0.21	0.25 0.25 0.25	0.21 0.21 0.21	56.9 54.9 56.0
East:	Sadd	eback Mo	ountain F	Road (E)										
4 6	L2 R2	4 94	0.0 1.1	4 99	0.0 1.1	0.068 0.068	5.6 5.6	LOS A LOS A	0.2 0.2	1.1 1.1	0.07 0.07	0.59 0.59	0.07 0.07	53.5 52.9
Appro		98	1.0	103	1.0	0.068	5.6	LOSA	0.2	1.1	0.07	0.59	0.07	52.9
North	n: Old S	Saddleba	ck Road											
7 8	L2 T1	145 5	0.0 0.0	153 5	0.0 0.0	0.085 0.085	5.6 0.0	LOS A LOS A	0.0 0.0	0.0 0.0	0.00 0.00	0.56 0.56	0.00 0.00	53.7 55.1
Appro	oach	150	0.0	158	0.0	0.085	5.4	NA	0.0	0.0	0.00	0.56	0.00	53.8
All Vehic	cles	257	0.4	271	0.4	0.085	5.4	NA	0.2	1.1	0.03	0.56	0.03	53.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:58 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9
V Site: 3AME [SOU_SAD_36_AM_E (Site Folder: Everything AM)]

8:15AM - 9:15AM Complete combination of conditions Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Sout	h Kiama	Drive (S))										
1a 3	L1 R2	286 541	2 18	301 569	0.7 3.3	0.476 0.476	3.3 3.7	LOS A LOS A	0.0 0.0	0.0 0.0	0.00 0.00	0.46 0.46	0.00 0.00	38.3 37.5
Appro		827 Kiama D	20	871	2.4	0.476	3.6	NA	0.0	0.0	0.00	0.46	0.00	37.9
	L2		12	005	E 4	0.425	2.4		0.0	0.0	0.00	0.45	0.00	27.0
4 6a	L2 R1	223 159	12	235 167	5.4 0.6	0.135 0.122	3.4 4.6	LOS A LOS A	0.0 0.6	0.0 4.2	0.00 0.57	0.45 0.63	0.00 0.57	37.8 36.7
Appro	oach	382	13	402	3.4	0.135	3.9	NA	0.6	4.2	0.24	0.53	0.24	37.3
North	West:	Saddleb	ack Mour	ntain Roa	d									
27a 29a	L1 R1	387 135	1 0	407 142	0.3 0.0	0.329 0.618	5.5 29.3	LOS A LOS C	1.8 2.9	12.5 20.5	0.59 0.92	0.76 1.17	0.66 1.51	36.2 30.2
Appro	bach	522	1	549	0.2	0.618	11.6	LOS A	2.9	20.5	0.67	0.87	0.88	33.7
All Vehic	les	1731	34	1822	2.0	0.618	6.1	NA	2.9	20.5	0.26	0.60	0.32	36.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:11:00 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

W Site: 4AME [SOU_MAN_36_AM_E (Site Folder: Everything AM)]

8:15AM - 9:15AM Complete combination of conditions Site Category: Future Conditions 1 Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of				Effective	Aver.	Aver.
ID		VOLL [Total	HV 1	FLO [Total	WS HV]	Satn	Delay	Service	[Veh.	EUE Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	n: Hen	ley Avenı	le											
1	L2	17	0.0	18	0.0	0.052	6.1	LOS A	0.3	1.9	0.63	0.62	0.63	33.6
2	T1	16	0.0	17	0.0	0.052	5.7	LOS A	0.3	1.9	0.63	0.62	0.63	37.4
3	R2	3	0.0	3	0.0	0.052	9.1	LOS A	0.3	1.9	0.63	0.62	0.63	34.7
3u	U	1	0.0	1	0.0	0.052	10.5	LOS A	0.3	1.9	0.63	0.62	0.63	37.1
Appro	oach	37	0.0	39	0.0	0.052	6.3	LOS A	0.3	1.9	0.63	0.62	0.63	36.0
East:	Bona	ira Street												
4	L2	16	0.0	17	0.0	0.306	5.3	LOS A	1.9	13.5	0.64	0.73	0.64	32.4
5	T1	41	4.9	43	4.9	0.306	5.1	LOS A	1.9	13.5	0.64	0.73	0.64	29.8
6	R2	193	2.6	203	2.6	0.306	8.4	LOS A	1.9	13.5	0.64	0.73	0.64	36.0
6u	U	1	0.0	1	0.0	0.306	9.7	LOS A	1.9	13.5	0.64	0.73	0.64	15.4
Appro	oach	251	2.8	264	2.8	0.306	7.7	LOS A	1.9	13.5	0.64	0.73	0.64	35.3
North	: Man	ning Stre	et											
7	L2	114	4.4	120	4.4	0.411	3.1	LOS A	3.5	25.0	0.40	0.53	0.40	36.0
8	T1	28	3.6	29	3.6	0.411	2.7	LOS A	3.5	25.0	0.40	0.53	0.40	37.5
9	R2	318	3.5	335	3.5	0.411	6.1	LOS A	3.5	25.0	0.40	0.53	0.40	36.9
9u	U	30	3.3	32	3.3	0.411	7.4	LOS A	3.5	25.0	0.40	0.53	0.40	38.6
Appro	bach	490	3.7	516	3.7	0.411	5.3	LOS A	3.5	25.0	0.40	0.53	0.40	36.9
West	: Sout	h Kiama I	Drive											
10	L2	847	1.8	892	1.8	0.914	15.2	LOS B	23.8	169.9	1.00	1.11	1.51	31.3
11	T1	62	6.5	65	6.5	0.914	15.0	LOS B	23.8	169.9	1.00	1.11	1.51	21.9
12	R2	18	5.6	19	5.6	0.914	18.4	LOS B	23.8	169.9	1.00	1.11	1.51	28.0
12u	U	2	0.0	2	0.0	0.914	19.4	LOS B	23.8	169.9	1.00	1.11	1.51	23.7
Appro	bach	929	2.2	978	2.2	0.914	15.2	LOS B	23.8	169.9	1.00	1.11	1.51	31.0
All Vehic	les	1707	2.6	1797	2.6	0.914	11.1	LOS A	23.8	169.9	0.77	0.88	1.04	33.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:11:01 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

W Site: 5AME [BLA_OLD_36_AM_E (Site Folder: Everything AM)]

8:15AM - 9:15AM Complete combination of conditions Site Category: Future Conditions 1 Roundabout

		ovemen	t Perfoi	mance										
Mov ID	Turn	INP VOLL		DEM. FLO		Deg.		Level of Service		ACK OF EUE	Prop. E Que		Aver. No.	Aver.
שו		[Total	HV 1	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	n: Old :	Saddleba	ack Road	(S)										
1	L2	16	0.0	17	0.0	0.246	4.6	LOS A	1.4	10.0	0.33	0.61	0.33	33.8
2	T1	1	0.0	1	0.0	0.246	4.3	LOS A	1.4	10.0	0.33	0.61	0.33	34.2
3	R2	254	1.6	267	1.6	0.246	7.5	LOS A	1.4	10.0	0.33	0.61	0.33	28.6
3u	U	1	0.0	1	0.0	0.246	8.9	LOS A	1.4	10.0	0.33	0.61	0.33	28.5
Appro	oach	272	1.5	286	1.5	0.246	7.3	LOS A	1.4	10.0	0.33	0.61	0.33	29.0
East:	Bland	Street (E	E)											
4	L2	93	2.2	98	2.2	0.165	4.1	LOS A	1.0	6.9	0.19	0.46	0.19	34.3
5	T1	105	1.0	111	1.0	0.165	3.7	LOS A	1.0	6.9	0.19	0.46	0.19	39.6
6	R2	5	20.0	5	20.0	0.165	7.1	LOS A	1.0	6.9	0.19	0.46	0.19	35.8
6u	U	2	0.0	2	0.0	0.165	8.4	LOS A	1.0	6.9	0.19	0.46	0.19	31.7
Appro	oach	205	2.0	216	2.0	0.165	4.0	LOS A	1.0	6.9	0.19	0.46	0.19	37.3
North	n: Old S	Saddleba	ck Road	(N)										
7	L2	8	12.5	8	12.5	0.016	7.5	LOS A	0.1	0.6	0.60	0.62	0.60	31.6
8	T1	1	0.0	1	0.0	0.016	6.7	LOS A	0.1	0.6	0.60	0.62	0.60	33.4
9	R2	1	0.0	1	0.0	0.016	9.9	LOS A	0.1	0.6	0.60	0.62	0.60	36.0
9u	U	1	0.0	1	0.0	0.016	11.3	LOS A	0.1	0.6	0.60	0.62	0.60	36.2
Appro	oach	11	9.1	12	9.1	0.016	8.0	LOS A	0.1	0.6	0.60	0.62	0.60	32.6
West	: Blanc	d Street (W)											
10	L2	1	0.0	1	0.0	0.301	5.8	LOS A	1.8	12.8	0.53	0.62	0.53	37.2
11	T1	236	0.4	248	0.4	0.301	5.5	LOS A	1.8	12.8	0.53	0.62	0.53	36.9
12	R2	38	0.0	40	0.0	0.301	8.7	LOS A	1.8	12.8	0.53	0.62	0.53	33.8
12u	U	1	0.0	1	0.0	0.301	10.1	LOS A	1.8	12.8	0.53	0.62	0.53	39.8
Appro	oach	276	0.4	291	0.4	0.301	5.9	LOS A	1.8	12.8	0.53	0.62	0.53	36.4
All Vehic	cles	764	1.3	804	1.3	0.301	5.9	LOS A	1.8	12.8	0.37	0.57	0.37	33.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:54 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

W Site: 6AME [BLA_EUG_36_AM_E (Site Folder: Everything AM)]

8:15AM - 9:15AM Complete combination of conditions Site Category: Future Conditions 1 Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total	IMES HV]	DEM/ FLO [Total	WS HV]	Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
	-	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	n: Eug	ene Stree	et											
1	L2	1	0.0	1	0.0	0.036	8.4	LOS A	0.2	1.5	0.71	0.69	0.71	24.3
2	T1	10	10.0	11	10.0	0.036	8.9	LOS A	0.2	1.5	0.71	0.69	0.71	32.4
3	R2	9	0.0	9	0.0	0.036	11.4	LOS A	0.2	1.5	0.71	0.69	0.71	30.4
3u	U	1	0.0	1	0.0	0.036	12.8	LOS A	0.2	1.5	0.71	0.69	0.71	19.7
Appr	oach	21	4.8	22	4.8	0.036	10.1	LOS A	0.2	1.5	0.71	0.69	0.71	30.8
East:	Bland	Street (E)											
4	L2	11	0.0	12	0.0	0.375	3.9	LOS A	3.0	21.6	0.06	0.57	0.06	34.4
5	T1	202	2.5	213	2.5	0.375	3.5	LOS A	3.0	21.6	0.06	0.57	0.06	38.2
6	R2	365	2.7	384	2.7	0.375	6.7	LOS A	3.0	21.6	0.06	0.57	0.06	40.9
6u	U	1	0.0	1	0.0	0.375	8.1	LOS A	3.0	21.6	0.06	0.57	0.06	41.1
Appr	oach	579	2.6	609	2.6	0.375	5.6	LOS A	3.0	21.6	0.06	0.57	0.06	40.0
West	: Bland	d Street (W)											
10	L2	314	1.6	331	1.6	0.600	9.3	LOS A	5.4	38.0	0.75	0.86	0.89	33.6
11	T1	188	1.1	198	1.1	0.600	8.9	LOS A	5.4	38.0	0.75	0.86	0.89	33.2
12	R2	1	0.0	1	0.0	0.600	12.1	LOS A	5.4	38.0	0.75	0.86	0.89	23.4
12u	U	2	0.0	2	0.0	0.600	13.5	LOS A	5.4	38.0	0.75	0.86	0.89	22.8
Appr	oach	505	1.4	532	1.4	0.600	9.2	LOS A	5.4	38.0	0.75	0.86	0.89	33.4
All Vehic	les	1105	2.1	1163	2.1	0.600	7.3	LOS A	5.4	38.0	0.39	0.70	0.45	36.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:55 PM

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:55 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 7AME [SHO_BLA_36_AM_E (Site Folder: Everything AM)]

8:15AM - 9:15AM Complete combination of conditions Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	mance										
Mov ID	Turn	INF VOLU [Total veh/h	PUT JMES HV] %	DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Sho	alhaven \$	Street (S)										
1	L2	29	17.2	31	17.2	0.044	3.5	LOS A	0.0	0.1	0.01	0.20	0.01	38.4
2	T1	40	20.0	42	20.0	0.044	0.0	LOS A	0.0	0.1	0.01	0.20	0.01	34.8
3	R2	1	0.0	1	0.0	0.044	6.6	LOS A	0.0	0.1	0.01	0.20	0.01	15.0
Appro	oach	70	18.6	74	18.6	0.044	1.5	NA	0.0	0.1	0.01	0.20	0.01	36.7
East:	Acces	ss Road												
4	L2	1	0.0	1	0.0	0.023	0.3	LOS A	0.1	0.4	0.37	0.32	0.37	12.6
5	T1	7	0.0	7	0.0	0.023	1.9	LOS A	0.1	0.4	0.37	0.32	0.37	23.5
6	R2	13	0.0	14	0.0	0.023	1.6	LOS A	0.1	0.4	0.37	0.32	0.37	13.0
Appro	oach	21	0.0	22	0.0	0.023	1.7	LOS A	0.1	0.4	0.37	0.32	0.37	17.6
North	n: Shoa	alhaven S	Street (N)											
7	L2	32	0.0	34	0.0	0.346	7.4	LOS A	2.4	17.3	0.24	0.37	0.24	14.6
8	T1	126	10.3	133	10.3	0.346	0.3	LOS A	2.4	17.3	0.24	0.37	0.24	29.5
9	R2	540	1.9	568	1.9	0.346	3.6	LOS A	2.4	17.3	0.24	0.37	0.24	36.4
Appro	oach	698	3.3	735	3.3	0.346	3.2	NA	2.4	17.3	0.24	0.37	0.24	34.8
West	: Blan	d Street												
10	L2	201	2.0	212	2.0	0.128	3.5	LOS A	0.6	4.3	0.10	0.45	0.10	36.1
11	T1	4	0.0	4	0.0	0.128	8.9	LOS A	0.6	4.3	0.10	0.45	0.10	24.6
12	R2	13	0.0	14	0.0	0.128	6.6	LOS A	0.6	4.3	0.10	0.45	0.10	34.7
Appro	oach	218	1.8	229	1.8	0.128	3.8	LOS A	0.6	4.3	0.10	0.45	0.10	35.7
All Vehic	les	1007	4.0	1060	4.0	0.346	3.2	NA	2.4	17.3	0.19	0.37	0.19	34.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:56 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

W Site: 8AME [JAM_BAN_36_AM_E (Site Folder: Everything AM)]

8:15AM - 9:15AM Complete combination of conditions Site Category: Future Conditions 1 Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Ban	ksia Drive	;											
1	L2	3	0.0	3	0.0	0.087	3.1	LOS A	0.4	3.0	0.32	0.61	0.32	23.0
3	R2	91	1.1	96	1.1	0.087	6.8	LOS A	0.4	3.0	0.32	0.61	0.32	39.1
3u	U	1	0.0	1	0.0	0.087	8.4	LOS A	0.4	3.0	0.32	0.61	0.32	25.1
Appro	oach	95	1.1	100	1.1	0.087	6.7	LOS A	0.4	3.0	0.32	0.61	0.32	38.5
East:	Jamb	eroo Roa	d (E)											
4	L2	65	1.5	68	1.5	0.138	4.2	LOS A	0.7	5.2	0.04	0.47	0.04	41.8
5	T1	143	0.7	151	0.7	0.138	4.4	LOS A	0.7	5.2	0.04	0.47	0.04	38.5
6u	U	5	0.0	5	0.0	0.138	10.1	LOS A	0.7	5.2	0.04	0.47	0.04	50.8
Appro	oach	213	0.9	224	0.9	0.138	4.5	LOS A	0.7	5.2	0.04	0.47	0.04	39.7
West	: Jamb	oeroo Roa	ad (W)											
11	T1	259	0.8	273	0.8	0.219	3.9	LOS A	1.3	9.0	0.30	0.46	0.30	46.0
12	R2	2	0.0	2	0.0	0.219	7.6	LOS A	1.3	9.0	0.30	0.46	0.30	31.4
12u	U	1	0.0	1	0.0	0.219	9.4	LOS A	1.3	9.0	0.30	0.46	0.30	25.1
Appro	oach	262	0.8	276	0.8	0.219	4.0	LOS A	1.3	9.0	0.30	0.46	0.30	45.9
All Vehic	les	570	0.9	600	0.9	0.219	4.6	LOS A	1.3	9.0	0.20	0.49	0.20	42.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:51 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 9AME [JAM_SPR_36_AM_E (Site Folder: Everything AM)]

8:15AM - 9:15AM Complete combination of conditions Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO' [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Huto	chinson S		VCH/H	70	0/0	300		VCII					N11/11
1	L2	1	0.0	1	0.0	0.005	4.9	LOS A	0.0	0.1	0.41	0.56	0.41	43.8
2	T1	1	0.0	1	0.0	0.005	7.6	LOS A	0.0	0.1	0.41	0.56	0.41	46.3
3	R2	1	0.0	1	0.0	0.005	10.4	LOS A	0.0	0.1	0.41	0.56	0.41	44.4
Appr	oach	3	0.0	3	0.0	0.005	7.6	LOS A	0.0	0.1	0.41	0.56	0.41	44.9
East	Terral	ong Stree	et											
4	L2	1	0.0	1	0.0	0.095	5.5	LOS A	0.0	0.0	0.00	0.00	0.00	57.7
5	T1	173	0.6	182	0.6	0.095	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
6	R2	361	1.7	380	1.7	0.227	6.9	LOS A	1.3	9.1	0.50	0.64	0.50	47.6
Appr	oach	535	1.3	563	1.3	0.227	4.6	NA	1.3	9.1	0.34	0.43	0.34	50.3
North	n: Sprii	ng Creek	Drive											
7	L2	122	0.8	128	0.8	0.076	6.2	LOS A	0.4	2.5	0.35	0.57	0.35	48.1
8	T1	1	0.0	1	0.0	0.086	8.5	LOS A	0.3	2.0	0.63	0.84	0.63	44.7
9	R2	38	2.6	40	2.6	0.086	11.3	LOS A	0.3	2.0	0.63	0.84	0.63	43.0
Appr	oach	161	1.2	169	1.2	0.086	7.5	LOS A	0.4	2.5	0.42	0.64	0.42	46.8
West	: Jamb	peroo Roa	ad											
10	L2	116	0.9	122	0.9	0.207	5.6	LOS A	0.0	0.1	0.00	0.18	0.00	54.2
11	T1	258	0.8	272	0.8	0.207	0.0	LOS A	0.0	0.1	0.00	0.18	0.00	56.2
12	R2	1	0.0	1	0.0	0.207	6.0	LOS A	0.0	0.1	0.00	0.18	0.00	49.2
Appr	oach	375	0.8	395	0.8	0.207	1.7	NA	0.0	0.1	0.00	0.18	0.00	55.5
All Vehic	cles	1074	1.1	1131	1.1	0.227	4.1	NA	1.3	9.1	0.23	0.38	0.23	51.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:10:53 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 1PME [OLD_LON_36_PM_E (Site Folder: Everything PM)]

3:00PM - 4:00PM Complete combination of conditions Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU	MES	DEM, FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. I Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Old	Saddleba	ck Road	I (S)										
1	L2	138	0.0	145	0.0	0.125	5.6	LOS A	0.0	0.0	0.00	0.36	0.00	55.3
2	T1	87	0.0	92	0.0	0.125	0.0	LOS A	0.0	0.0	0.00	0.36	0.00	56.8
Appro	oach	225	0.0	237	0.0	0.125	3.4	NA	0.0	0.0	0.00	0.36	0.00	55.9
North	: Old S	Saddleba	ck Road	(N)										
8	T1	37	0.0	39	0.0	0.025	0.2	LOS A	0.1	0.4	0.14	0.12	0.14	58.4
9	R2	9	0.0	9	0.0	0.025	6.0	LOS A	0.1	0.4	0.14	0.12	0.14	56.2
Appro	oach	46	0.0	48	0.0	0.025	1.3	NA	0.1	0.4	0.14	0.12	0.14	57.9
West	: Long	Brush Ro	bad											
10	L2	9	0.0	9	0.0	0.034	5.7	LOS A	0.1	0.6	0.16	0.58	0.16	53.2
12	R2	39	2.6	41	2.6	0.034	5.8	LOS A	0.1	0.6	0.16	0.58	0.16	52.6
Appro	oach	48	2.1	51	2.1	0.034	5.8	LOS A	0.1	0.6	0.16	0.58	0.16	52.7
All Vehic	les	319	0.3	336	0.3	0.125	3.5	NA	0.1	0.6	0.04	0.36	0.04	55.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:11:09 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 2PME [OLD_SAD_36_PM_E (Site Folder: Everything PM)]

3:00PM - 4:00PM Complete combination of conditions Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehi	cle M	ovement	t Perfo	rmance										
Mov ID	Turn	INP VOLU	MES	DEM/ FLO	NS	Deg. Satn		Level of Service	QUE	ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Sado	dleback N	lountain	Road (S)										
2	T1	13	0.0	14	0.0	0.012	0.1	LOS A	0.0	0.3	0.15	0.26	0.15	57.1
3	R2	11	0.0	12	0.0	0.012	5.6	LOS A	0.0	0.3	0.15	0.26	0.15	55.0
Appro	bach	24	0.0	25	0.0	0.012	2.6	NA	0.0	0.3	0.15	0.26	0.15	56.1
East:	Saddl	eback Mo	ountain I	Road (E)										
4	L2	13	0.0	14	0.0	0.153	5.6	LOS A	0.4	2.8	0.06	0.59	0.06	53.5
6	R2	211	0.0	222	0.0	0.153	5.6	LOS A	0.4	2.8	0.06	0.59	0.06	53.0
Appro	bach	224	0.0	236	0.0	0.153	5.6	LOS A	0.4	2.8	0.06	0.59	0.06	53.0
North	: Old S	Saddleba	ck Road											
7	L2	71	0.0	75	0.0	0.043	5.6	LOS A	0.0	0.0	0.00	0.54	0.00	53.9
8	T1	5	0.0	5	0.0	0.043	0.0	LOS A	0.0	0.0	0.00	0.54	0.00	55.3
Appro	bach	76	0.0	80	0.0	0.043	5.2	NA	0.0	0.0	0.00	0.54	0.00	54.0
All Vehic	les	324	0.0	341	0.0	0.153	5.3	NA	0.4	2.8	0.05	0.55	0.05	53.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:11:10 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 3PME [SOU_SAD_36_PM_E (Site Folder: Everything PM)]

3:00PM - 4:00PM Complete combination of conditions Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Sout	th Kiama)										
1a 3 Appro	L1 R2 bach	306 423 729	0 11 11	322 445 767	0.0 2.6 1.5	0.415 0.415 0.415	3.2 3.7 3.5	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.46 0.46 0.46	0.00 0.00 0.00	38.4 37.6 38.0
East:	South	Kiama D	Drive (E)											
4 6a Appro	L2 R1 bach	258 224 482	16 0 16	272 236 507	6.2 0.0 3.3	0.157 0.148 0.157	3.4 4.1 3.8	LOS A LOS A NA	0.0 0.8 0.8	0.0 5.4 5.4	0.00 0.51 0.24	0.45 0.58 0.51	0.00 0.51 0.24	37.8 36.8 37.3
North	West:	Saddleb	ack Mour	ntain Roa	d									
27a 29a Appro	L1 R1 bach	173 85 258	0 0 0	182 89 272	0.0 0.0 0.0	0.127 0.359 0.359	4.4 20.7 9.8	LOS A LOS B LOS A	0.6 1.4 1.4	4.1 9.8 9.8	0.47 0.86 0.60	0.59 1.00 0.72	0.47 1.07 0.67	36.6 32.5 34.6
All Vehic	les	1469	27	1546	1.8	0.415	4.7	NA	1.4	9.8	0.18	0.52	0.19	37.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:11:11 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 4PME [SOU_MAN_36_PM_E (Site Folder: Everything PM)]

3:00PM - 4:00PM Complete combination of conditions Site Category: Future Conditions 1 Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLL		DEM/ FLO		Deg.		Level of Service	95% BA QUE		Prop. E Que		Aver.	Aver. Speed
שו		[Total	HV 1	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
Sout	n: Hen	ley Avenu	he											
1	L2	21	0.0	22	0.0	0.069	6.9	LOS A	0.4	2.7	0.68	0.67	0.68	33.0
2	T1	20	0.0	21	0.0	0.069	6.5	LOS A	0.4	2.7	0.68	0.67	0.68	37.0
3	R2	4	0.0	4	0.0	0.069	9.9	LOS A	0.4	2.7	0.68	0.67	0.68	34.0
3u	U	1	0.0	1	0.0	0.069	11.2	LOS A	0.4	2.7	0.68	0.67	0.68	36.6
Appr	oach	46	0.0	48	0.0	0.069	7.1	LOS A	0.4	2.7	0.68	0.67	0.68	35.5
East:	Bonai	ira Street												
4	L2	12	0.0	13	0.0	0.290	6.3	LOS A	1.8	12.7	0.70	0.78	0.70	31.5
5	T1	26	0.0	27	0.0	0.290	5.9	LOS A	1.8	12.7	0.70	0.78	0.70	28.5
6	R2	173	2.3	182	2.3	0.290	9.4	LOS A	1.8	12.7	0.70	0.78	0.70	35.3
6u	U	2	0.0	2	0.0	0.290	10.6	LOS A	1.8	12.7	0.70	0.78	0.70	15.1
Appr	oach	213	1.9	224	1.9	0.290	8.8	LOS A	1.8	12.7	0.70	0.78	0.70	34.7
North	n: Man	ning Stre	et											
7	L2	119	0.0	125	0.0	0.496	3.1	LOS A	4.4	31.4	0.41	0.53	0.41	36.0
8	T1	40	0.0	42	0.0	0.496	2.7	LOS A	4.4	31.4	0.41	0.53	0.41	37.5
9	R2	427	3.5	449	3.5	0.496	6.2	LOS A	4.4	31.4	0.41	0.53	0.41	36.8
9u	U	27	0.0	28	0.0	0.496	7.5	LOS A	4.4	31.4	0.41	0.53	0.41	38.6
Appr	oach	613	2.4	645	2.4	0.496	5.4	LOS A	4.4	31.4	0.41	0.53	0.41	36.9
West	: Sout	h Kiama I	Drive											
10	L2	522	1.9	549	1.9	0.594	4.7	LOS A	5.2	37.2	0.68	0.64	0.69	36.6
11	T1	51	2.0	54	2.0	0.594	4.3	LOS A	5.2	37.2	0.68	0.64	0.69	32.8
12	R2	23	0.0	24	0.0	0.594	7.7	LOS A	5.2	37.2	0.68	0.64	0.69	36.0
12u	U	4	0.0	4	0.0	0.594	9.0	LOS A	5.2	37.2	0.68	0.64	0.69	35.3
Appr	oach	600	1.8	632	1.8	0.594	4.8	LOS A	5.2	37.2	0.68	0.64	0.69	36.5
All Vehic	cles	1472	2.0	1549	2.0	0.594	5.7	LOS A	5.2	37.2	0.57	0.62	0.57	36.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:11:12 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 5PME [BLA_OLD_36_PM_E (Site Folder: Everything PM)]

3:00PM - 4:00PM Complete combination of conditions Site Category: Future Conditions 1 Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INF VOLL		DEM/ FLO		Deg.		Level of Service	95% BA QUE		Prop. E Que		Aver. No.	Aver.
שו		[Total	HV 1	FLO Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
Sout	h: Old	Saddleba	ack Road	I (S)										
1	L2	37	0.0	39	0.0	0.185	5.5	LOS A	1.0	6.9	0.46	0.66	0.46	33.6
2	T1	1	0.0	1	0.0	0.185	5.2	LOS A	1.0	6.9	0.46	0.66	0.46	34.0
3	R2	134	0.7	141	0.7	0.185	8.4	LOS A	1.0	6.9	0.46	0.66	0.46	28.4
3u	U	1	0.0	1	0.0	0.185	9.8	LOS A	1.0	6.9	0.46	0.66	0.46	28.2
Appr	oach	173	0.6	182	0.6	0.185	7.8	LOS A	1.0	6.9	0.46	0.66	0.46	29.7
East:	Bland	Street (E	E)											
4	L2	191	0.0	201	0.0	0.316	4.0	LOS A	2.1	14.8	0.15	0.45	0.15	34.9
5	T1	242	1.7	255	1.7	0.316	3.6	LOS A	2.1	14.8	0.15	0.45	0.15	40.0
6	R2	7	0.0	7	0.0	0.316	6.8	LOS A	2.1	14.8	0.15	0.45	0.15	38.8
6u	U	1	0.0	1	0.0	0.316	8.3	LOS A	2.1	14.8	0.15	0.45	0.15	32.0
Appr	oach	441	0.9	464	0.9	0.316	3.9	LOS A	2.1	14.8	0.15	0.45	0.15	38.0
North	n: Old \$	Saddleba	ick Road	(N)										
7	L2	5	0.0	5	0.0	0.009	5.3	LOS A	0.0	0.3	0.43	0.54	0.43	34.4
8	T1	1	0.0	1	0.0	0.009	5.0	LOS A	0.0	0.3	0.43	0.54	0.43	35.9
9	R2	1	0.0	1	0.0	0.009	8.2	LOS A	0.0	0.3	0.43	0.54	0.43	38.1
9u	U	1	0.0	1	0.0	0.009	9.6	LOS A	0.0	0.3	0.43	0.54	0.43	38.6
Appr	oach	8	0.0	8	0.0	0.009	6.2	LOS A	0.0	0.3	0.43	0.54	0.43	35.7
West	: Bland	d Street (W)											
10	L2	2	0.0	2	0.0	0.139	4.8	LOS A	0.8	5.5	0.36	0.51	0.36	38.3
11	T1	119	3.4	125	3.4	0.139	4.5	LOS A	0.8	5.5	0.36	0.51	0.36	38.0
12	R2	19	0.0	20	0.0	0.139	7.6	LOS A	0.8	5.5	0.36	0.51	0.36	34.9
12u	U	1	0.0	1	0.0	0.139	9.0	LOS A	0.8	5.5	0.36	0.51	0.36	40.9
Appr		141	2.8	148	2.8	0.139	4.9	LOS A	0.8	5.5	0.36	0.51	0.36	37.5
All Vehic	cles	763	1.2	803	1.2	0.316	5.0	LOS A	2.1	14.8	0.26	0.51	0.26	35.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:11:05 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 6PME [BLA_EUG_36_PM_E (Site Folder: Everything PM)]

3:00PM - 4:00PM Complete combination of conditions Site Category: Future Conditions 1 Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	EUE Dist]	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	n: Eua	ene Stree		ven/n	70	V/C	SEC	_	ven	m	_	_	_	KIII/II
1	L2	1	0.0	1	0.0	0.027	11.9	LOS A	0.2	1.2	0.81	0.72	0.81	21.5
2	 T1	8	0.0	8	0.0	0.027	11.9	LOSA	0.2	1.2	0.81	0.72	0.81	29.8
3	R2	3	0.0	3	0.0	0.027	14.9	LOS B	0.2	1.2	0.81	0.72	0.81	27.5
3u	U	1	0.0	1	0.0	0.027	16.3	LOS B	0.2	1.2	0.81	0.72	0.81	17.3
Appr	oach	13	0.0	14	0.0	0.027	12.9	LOS A	0.2	1.2	0.81	0.72	0.81	28.0
East:	Bland	Street (E)											
4	L2	16	0.0	17	0.0	0.530	3.9	LOS A	5.3	37.4	0.09	0.52	0.09	35.0
5	T1	441	0.9	464	0.9	0.530	3.5	LOS A	5.3	37.4	0.09	0.52	0.09	39.0
6	R2	361	2.8	380	2.8	0.530	6.8	LOS A	5.3	37.4	0.09	0.52	0.09	41.5
6u	U	1	0.0	1	0.0	0.530	8.2	LOS A	5.3	37.4	0.09	0.52	0.09	41.8
Appr	oach	819	1.7	862	1.7	0.530	5.0	LOS A	5.3	37.4	0.09	0.52	0.09	40.2
West	: Bland	d Street (\	N)											
10	L2	159	0.0	167	0.0	0.314	6.7	LOS A	1.8	12.9	0.59	0.69	0.59	36.5
11	T1	99	5.1	104	5.1	0.314	6.5	LOS A	1.8	12.9	0.59	0.69	0.59	36.4
12	R2	1	0.0	1	0.0	0.314	9.6	LOS A	1.8	12.9	0.59	0.69	0.59	26.5
12u	U	4	0.0	4	0.0	0.314	11.0	LOS A	1.8	12.9	0.59	0.69	0.59	20.3
Appr	oach	263	1.9	277	1.9	0.314	6.7	LOS A	1.8	12.9	0.59	0.69	0.59	36.2
All Vehic	les	1095	1.7	1153	1.7	0.530	5.5	LOS A	5.3	37.4	0.22	0.56	0.22	39.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:11:06 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 7PME [SHO_BLA_36_PM_E (Site Folder: Everything **PM)]**

3:00PM - 4:00PM Complete combination of conditions Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehicle Movement Performance														
Mov ID	Turn	INF VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Sho	alhaven S	Street (S)										
1	L2	86	8.1	91	8.1	0.086	3.4	LOS A	0.0	0.1	0.00	0.28	0.00	37.7
2	T1	54	20.4	57	20.4	0.086	0.0	LOS A	0.0	0.1	0.00	0.28	0.00	33.1
3	R2	1	0.0	1	0.0	0.086	6.3	LOS A	0.0	0.1	0.00	0.28	0.00	14.8
Appr	oach	141	12.8	148	12.8	0.086	2.1	NA	0.0	0.1	0.00	0.28	0.00	36.7
East:	Acces	ss Road												
4	L2	3	0.0	3	0.0	0.023	0.1	LOS A	0.1	0.4	0.20	0.16	0.20	12.7
5	T1	5	0.0	5	0.0	0.023	2.3	LOS A	0.1	0.4	0.20	0.16	0.20	23.5
6	R2	14	0.0	15	0.0	0.023	1.5	LOS A	0.1	0.4	0.20	0.16	0.20	13.0
Appr	oach	22	0.0	23	0.0	0.023	1.5	LOS A	0.1	0.4	0.20	0.16	0.20	16.3
North	n: Shoa	alhaven S	Street (N))										
7	L2	17	0.0	18	0.0	0.366	7.7	LOS A	2.6	18.4	0.35	0.44	0.35	14.3
8	T1	50	26.0	53	26.0	0.366	0.5	LOS A	2.6	18.4	0.35	0.44	0.35	28.0
9	R2	655	0.8	689	0.8	0.366	3.9	LOS A	2.6	18.4	0.35	0.44	0.35	35.7
Appr	oach	722	2.5	760	2.5	0.366	3.7	NA	2.6	18.4	0.35	0.44	0.35	35.0
West	: Blan	d Street												
10	L2	107	3.7	113	3.7	0.072	3.6	LOS A	0.3	2.3	0.12	0.46	0.12	35.9
11	T1	4	0.0	4	0.0	0.072	9.0	LOS A	0.3	2.3	0.12	0.46	0.12	24.5
12	R2	4	50.0	4	50.0	0.072	9.7	LOS A	0.3	2.3	0.12	0.46	0.12	34.1
Appr	oach	115	5.2	121	5.2	0.072	4.0	LOS A	0.3	2.3	0.12	0.46	0.12	35.3
All Vehic	cles	1000	4.2	1053	4.2	0.366	3.5	NA	2.6	18.4	0.27	0.41	0.27	34.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:11:08 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 8PME [JAM_BAN_36_PM_E (Site Folder: Everything PM)]

3:00PM - 4:00PM Complete combination of conditions Site Category: Future Conditions 1 Roundabout

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Banksia Drive														
1	L2	4	0.0	4	0.0	0.050	3.8	LOS A	0.2	1.7	0.43	0.63	0.43	22.5
3	R2	43	2.3	45	2.3	0.050	7.5	LOS A	0.2	1.7	0.43	0.63	0.43	38.3
3u	U	1	0.0	1	0.0	0.050	9.1	LOS A	0.2	1.7	0.43	0.63	0.43	24.5
Appro	oach	48	2.1	51	2.1	0.050	7.2	LOS A	0.2	1.7	0.43	0.63	0.43	36.9
East:	Jamb	eroo Roa	d (E)											
4	L2	85	1.2	89	1.2	0.240	4.2	LOS A	1.4	10.0	0.06	0.46	0.06	41.6
5	T1	277	1.4	292	1.4	0.240	4.4	LOS A	1.4	10.0	0.06	0.46	0.06	38.4
6u	U	7	0.0	7	0.0	0.240	10.1	LOS A	1.4	10.0	0.06	0.46	0.06	50.6
Appro	oach	369	1.4	388	1.4	0.240	4.5	LOS A	1.4	10.0	0.06	0.46	0.06	39.3
West	: Jamb	peroo Roa	ad (W)											
11	T1	173	5.2	182	5.2	0.144	3.6	LOS A	0.8	5.9	0.20	0.43	0.20	45.8
12	R2	5	0.0	5	0.0	0.144	7.3	LOS A	0.8	5.9	0.20	0.43	0.20	32.1
12u	U	1	0.0	1	0.0	0.144	9.1	LOS A	0.8	5.9	0.20	0.43	0.20	25.5
Appro	oach	179	5.0	188	5.0	0.144	3.7	LOS A	0.8	5.9	0.20	0.43	0.20	45.5
All Vehic	les	596	2.5	627	2.5	0.240	4.5	LOS A	1.4	10.0	0.13	0.47	0.13	40.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:11:02 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

V Site: 9PME [JAM_SPR_36_PM_E (Site Folder: Everything **PM)]**

3:00PM - 4:00PM Complete combination of conditions Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] m	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Huto	chinson S	treet											
1	L2	1	0.0	1	0.0	0.006	5.3	LOS A	0.0	0.1	0.57	0.64	0.57	42.3
2	T1	1	0.0	1	0.0	0.006	9.8	LOS A	0.0	0.1	0.57	0.64	0.57	45.0
3	R2	1	0.0	1	0.0	0.006	13.9	LOS A	0.0	0.1	0.57	0.64	0.57	42.9
Appro	oach	3	0.0	3	0.0	0.006	9.7	LOS A	0.0	0.1	0.57	0.64	0.57	43.5
East:	Terral	long Stree	et											
4	L2	1	0.0	1	0.0	0.172	5.6	LOS A	0.0	0.0	0.00	0.00	0.00	57.7
5	T1	309	1.6	325	1.6	0.172	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
6	R2	573	2.3	603	2.3	0.313	6.4	LOS A	2.0	14.4	0.42	0.58	0.42	47.9
Appro	oach	883	2.0	929	2.0	0.313	4.2	NA	2.0	14.4	0.27	0.38	0.27	50.8
North	n: Sprii	ng Creek	Drive											
7	L2	88	4.5	93	4.5	0.051	6.0	LOS A	0.2	1.7	0.25	0.54	0.25	47.9
8	T1	1	0.0	1	0.0	0.171	11.2	LOS A	0.5	3.7	0.76	0.90	0.77	42.5
9	R2	54	0.0	57	0.0	0.171	15.0	LOS B	0.5	3.7	0.76	0.90	0.77	40.1
Appro	oach	143	2.8	151	2.8	0.171	9.4	LOS A	0.5	3.7	0.45	0.68	0.45	44.7
West	: Jamb	peroo Roa	ad											
10	L2	85	1.2	89	1.2	0.133	5.6	LOS A	0.0	0.1	0.01	0.22	0.01	53.5
11	T1	146	6.2	154	6.2	0.133	0.0	LOS A	0.0	0.1	0.01	0.22	0.01	55.4
12	R2	1	0.0	1	0.0	0.133	6.4	LOS A	0.0	0.1	0.01	0.22	0.01	48.8
Appro	oach	232	4.3	244	4.3	0.133	2.1	NA	0.0	0.1	0.01	0.22	0.01	54.6
All Vehic	les	1261	2.5	1327	2.5	0.313	4.4	NA	2.0	14.4	0.25	0.38	0.25	50.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Thursday, 6 October 2022 5:11:04 PM Project: S:\Projects\SCT_00337_Kiama West PP\3. Technical Work Area\1. Network Optimisation\SCT_0337_Kiama West_SIDRA_sc.sip9

APPENDIX B Network models

[Client name]

